scispace - formally typeset
Search or ask a question
Institution

Shanghai Jiao Tong University

EducationShanghai, Shanghai, China
About: Shanghai Jiao Tong University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Population & Cancer. The organization has 157524 authors who have published 184620 publications receiving 3451038 citations. The organization is also known as: Shanghai Communications University & Shanghai Jiaotong University.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors dub the molecular events associated with death-induced proliferation the “phoenix rising” pathway, which involves the caspase-mediated activation of phospholipase A2 and the subsequent production and release of the lipid signal prostaglandin E2, a stimulator of cell proliferation.
Abstract: The ability to regenerate damaged tissues is a common characteristic of multicellular organisms. We report a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. Key players in this process were caspases 3 and 7, proteases activated during the execution phase of apoptosis that contribute to cell death. Mice lacking either of these caspases were deficient in skin wound healing and in liver regeneration. Prostaglandin E 2 , a promoter of stem or progenitor cell proliferation and tissue regeneration, acted downstream of the caspases. We propose to call the pathway by which executioner caspases in apoptotic cells promote wound healing and tissue regeneration in multicellular organisms the “phoenix rising” pathway.

455 citations

Journal ArticleDOI
TL;DR: This S3 guideline informs clinical practice, health systems, policymakers and, indirectly, the public on the available and most effective modalities to treat periodontitis and to maintain a healthy dentition for a lifetime, according to the available evidence at the time of publication.
Abstract: BACKGROUND The recently introduced 2017 World Workshop on the classification of periodontitis, incorporating stages and grades of disease, aims to link disease classification with approaches to prevention and treatment, as it describes not only disease severity and extent but also the degree of complexity and an individual's risk. There is, therefore, a need for evidence-based clinical guidelines providing recommendations to treat periodontitis. AIM The objective of the current project was to develop a S3 Level Clinical Practice Guideline (CPG) for the treatment of Stage I-III periodontitis. MATERIAL AND METHODS This S3 CPG was developed under the auspices of the European Federation of Periodontology (EFP), following the methodological guidance of the Association of Scientific Medical Societies in Germany and the Grading of Recommendations Assessment, Development and Evaluation (GRADE). The rigorous and transparent process included synthesis of relevant research in 15 specifically commissioned systematic reviews, evaluation of the quality and strength of evidence, the formulation of specific recommendations and consensus, on those recommendations, by leading experts and a broad base of stakeholders. RESULTS The S3 CPG approaches the treatment of periodontitis (stages I, II and III) using a pre-established stepwise approach to therapy that, depending on the disease stage, should be incremental, each including different interventions. Consensus was achieved on recommendations covering different interventions, aimed at (a) behavioural changes, supragingival biofilm, gingival inflammation and risk factor control; (b) supra- and sub-gingival instrumentation, with and without adjunctive therapies; (c) different types of periodontal surgical interventions; and (d) the necessary supportive periodontal care to extend benefits over time. CONCLUSION This S3 guideline informs clinical practice, health systems, policymakers and, indirectly, the public on the available and most effective modalities to treat periodontitis and to maintain a healthy dentition for a lifetime, according to the available evidence at the time of publication.

454 citations

Journal ArticleDOI
TL;DR: It is found that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero.
Abstract: When an initial failure of nodes occurs in interdependent networks, a cascade of failure between the networks occurs. Earlier studies focused on random initial failures. Here we study the robustness of interdependent networks under targeted attack on high or low degree nodes. We introduce a general technique which maps the targeted-attack problem in interdependent networks to the random-attack problem in a transformed pair of interdependent networks. We find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. The result implies that interdependent networks are difficult to defend by strategies such as protecting the high degree nodes that have been found useful to significantly improve robustness of single networks.

454 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: A Self-similarity Grouping (SSG) approach, which exploits the potential similarity of unlabeled samples to build multiple clusters from different views automatically, and introduces a clustering-guided semisupervised approach named SSG ++ to conduct the one-shot domain adaption in an open set setting.
Abstract: Domain adaptation in person re-identification (re-ID) has always been a challenging task. In this work, we explore how to harness the similar natural characteristics existing in the samples from the target domain for learning to conduct person re-ID in an unsupervised manner. Concretely, we propose a Self-similarity Grouping (SSG) approach, which exploits the potential similarity (from the global body to local parts) of unlabeled samples to build multiple clusters from different views automatically. These independent clusters are then assigned with labels, which serve as the pseudo identities to supervise the training process. We repeatedly and alternatively conduct such a grouping and training process until the model is stable. Despite the apparent simplify, our SSG outperforms the state-of-the-arts by more than 4.6% (DukeMTMC→Market1501) and 4.4% (Market1501→DukeMTMC) in mAP, respectively. Upon our SSG, we further introduce a clustering-guided semisupervised approach named SSG ++ to conduct the one-shot domain adaption in an open set setting (i.e. the number of independent identities from the target domain is unknown). Without spending much effort on labeling, our SSG ++ can further promote the mAP upon SSG by 10.7% and 6.9%, respectively. Our Code is available at: https://github.com/OasisYang/SSG .

454 citations

Journal ArticleDOI
TL;DR: Inorganic halide perovskites (IHPs) have recently attracted huge attention in the field of optoelectronics as mentioned in this paper, and a lot of effort has been made towards the stabilization of IHPs for high-performance devices.
Abstract: Inorganic halide perovskites (IHPs) have recently attracted huge attention in the field of optoelectronics. IHPs are generally expected to exhibit superior chemical stability over the prevailing hybrid organic–inorganic perovskites that are widely used in optoelectronic devices such as solar cells and light-emitting devices. This is primarily owing to the elimination of weakly-bonded organic components in the IHP crystal structure. Nevertheless, many recent studies have revealed that IHPs still suffer significant issues in chemical instability, and thus, a lot of effort has been made towards the stabilization of IHPs for high-performance devices. In this context, a great deal of interest in the chemistry and perovskite community has been emerging to understand the chemical (in)stability of IHPs and develop engineering strategies for making more robust perovskite devices. This review will summarize the past research progress in this direction, give insights into the IHP (in)stability, and provide perspectives for the future effort in making stable IHP materials and devices.

453 citations


Authors

Showing all 158621 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Richard A. Flavell2311328205119
Jie Zhang1784857221720
Yang Yang1712644153049
Lei Jiang1702244135205
Gang Chen1673372149819
Thomas S. Huang1461299101564
Barbara J. Sahakian14561269190
Jean-Laurent Casanova14484276173
Kuo-Chen Chou14348757711
Weihong Tan14089267151
Xin Wu1391865109083
David Y. Graham138104780886
Bin Liu138218187085
Jun Chen136185677368
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

97% related

Fudan University
117.9K papers, 2.6M citations

96% related

Peking University
181K papers, 4.1M citations

95% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023415
20222,315
202120,873
202019,462
201916,699
201814,250