scispace - formally typeset
Search or ask a question
Institution

Shanghai Jiao Tong University

EducationShanghai, Shanghai, China
About: Shanghai Jiao Tong University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Population & Cancer. The organization has 157524 authors who have published 184620 publications receiving 3451038 citations. The organization is also known as: Shanghai Communications University & Shanghai Jiaotong University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of physicochemical properties of lignocellulosic biomass, including particle size, grindability, density, flowability, moisture sorption, thermal properties, proximate analysis properties, elemental composition, energy content and chemical composition, is presented.
Abstract: Lignocellulosic biomass is the most abundant and renewable material in the world for the production of biofuels. Using lignocellulosic biomass derived biofuels could reduce reliance on fossil fuels and contribute to climate change mitigation. A profound understanding of the physicochemical properties of lignocellulosic biomass and the analytical characterization methods for those properties is essential for the design and operation of associated biomass conversion processing facilities. The present article aims to present a comprehensive review of physicochemical properties of lignocellulosic biomass, including particle size, grindability, density, flowability, moisture sorption, thermal properties, proximate analysis properties, elemental composition, energy content and chemical composition. The corresponding characterization techniques for these properties and their recent development are also presented. This review is intended to provide the readers systematic knowledge in the physicochemical properties of lignocellulosic biomass and characterization techniques for the conversion of biomass and the application of biofuels.

398 citations

Journal ArticleDOI
TL;DR: Results indicated the waste biomass can be converted into value-added biochar as sorbents for removal of heavy metals and the removal ability varies with different biochar feedstock sources where the mineral components originated from the feedstock play an important role in the sorption nature of biochar.

398 citations

Journal ArticleDOI
TL;DR: The plant growth hormone auxin, which acts as a versatile trigger in many developmental processes, also plays a critical role in seed dormancy in Arabidopsis, and it is shown that disruptions in auxin signaling in MIR160-overexpressing plants, auxin receptor mutants, or auxin biosynthesis mutants dramatically release Seed dormancy, whereas increases in Auxin signaling or biosynthesis greatly enhance seed dormancies.
Abstract: The transition from dormancy to germination in seeds is a key physiological process during the lifecycle of plants. Abscisic acid (ABA) is the sole plant hormone known to maintain seed dormancy; it acts through a gene expression network involving the transcription factor ABSCISIC ACID INSENSITIVE 3 (ABI3). However, whether other phytohormone pathways function in the maintenance of seed dormancy in response to environmental and internal signals remains an important question. Here, we show that the plant growth hormone auxin, which acts as a versatile trigger in many developmental processes, also plays a critical role in seed dormancy in Arabidopsis. We show that disruptions in auxin signaling in MIR160-overexpressing plants, auxin receptor mutants, or auxin biosynthesis mutants dramatically release seed dormancy, whereas increases in auxin signaling or biosynthesis greatly enhance seed dormancy. Auxin action in seed dormancy requires the ABA signaling pathway (and vice versa), indicating that the roles of auxin and ABA in seed dormancy are interdependent. Furthermore, we show that auxin acts upstream of the major regulator of seed dormancy, ABI3, by recruiting the auxin response factors AUXIN RESPONSE FACTOR 10 and AUXIN RESPONSE FACTOR 16 to control the expression of ABI3 during seed germination. Our study, thus, uncovers a previously unrecognized regulatory factor of seed dormancy and a coordinating network of auxin and ABA signaling in this important process.

397 citations

Journal ArticleDOI
TL;DR: It is reported that normoxic H IF-1 activity can be upregulated through NO-mediated S-nitrosylation and stabilization of HIF-1 alpha, and this mechanism appears to be independent of the prolylhydroxylase-based pathway that is involved in oxygen-dependent regulation of Hif-1alpha.

396 citations

Posted Content
TL;DR: The proportion of questions that requires reasoning is much larger in RACE than that in other benchmark datasets for reading comprehension, and there is a significant gap between the performance of the state-of-the-art models and the ceiling human performance.
Abstract: We present RACE, a new dataset for benchmark evaluation of methods in the reading comprehension task. Collected from the English exams for middle and high school Chinese students in the age range between 12 to 18, RACE consists of near 28,000 passages and near 100,000 questions generated by human experts (English instructors), and covers a variety of topics which are carefully designed for evaluating the students' ability in understanding and reasoning. In particular, the proportion of questions that requires reasoning is much larger in RACE than that in other benchmark datasets for reading comprehension, and there is a significant gap between the performance of the state-of-the-art models (43%) and the ceiling human performance (95%). We hope this new dataset can serve as a valuable resource for research and evaluation in machine comprehension. The dataset is freely available at this http URL and the code is available at this https URL.

396 citations


Authors

Showing all 158621 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Richard A. Flavell2311328205119
Jie Zhang1784857221720
Yang Yang1712644153049
Lei Jiang1702244135205
Gang Chen1673372149819
Thomas S. Huang1461299101564
Barbara J. Sahakian14561269190
Jean-Laurent Casanova14484276173
Kuo-Chen Chou14348757711
Weihong Tan14089267151
Xin Wu1391865109083
David Y. Graham138104780886
Bin Liu138218187085
Jun Chen136185677368
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

97% related

Fudan University
117.9K papers, 2.6M citations

96% related

Peking University
181K papers, 4.1M citations

95% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023415
20222,316
202120,875
202019,462
201916,699
201814,250