scispace - formally typeset
Search or ask a question
Institution

Shanghai Jiao Tong University

EducationShanghai, Shanghai, China
About: Shanghai Jiao Tong University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Population & Cancer. The organization has 157524 authors who have published 184620 publications receiving 3451038 citations. The organization is also known as: Shanghai Communications University & Shanghai Jiaotong University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a spin-polarized scanning tunneling microscopy or spectroscopy has been applied to probe spin selective Andreev reflection (SSAR) of MZMs in a topological superconductor of the Bi-Te-3/NbSe-2 heterostructure.
Abstract: Recently, theory has predicted a Majorana zero mode (MZM) to induce spin selective Andreev reflection (SSAR), a novel magnetic property which can be used to detect the MZM. Here, spin-polarized scanning tunneling microscopy or spectroscopy has been applied to probe SSAR of MZMs in a topological superconductor of the Bi_{2}Te_{3}/NbSe_{2} heterostructure. The zero-bias peak of the tunneling differential conductance at the vortex center is observed substantially higher when the tip polarization and the external magnetic field are parallel rather than antiparallel to each other. This spin dependent tunneling effect provides direct evidence of MZM and reveals its magnetic property in addition to the zero energy modes. Our work will stimulate MZM research on these novel physical properties and, hence, is a step towards experimental study of their statistics and application in quantum computing.

549 citations

Journal ArticleDOI
TL;DR: This work developed and determined carbon nanosheets embedded with nitrogen and phosphorus dual-coordinated iron active sites that were favorable for oxygen intermediate adsorption/desorption, resulting in accelerated reaction kinetics and promising catalytic oxygen reduction activity.
Abstract: Atomically dispersed transition metal active sites have emerged as one of the most important fields of study because they display promising performance in catalysis and have the potential to serve as ideal models for fundamental understanding. However, both the preparation and determination of such active sites remain a challenge. The structural engineering of carbon- and nitrogen-coordinated metal sites (M-N-C, M = Fe, Co, Ni, Mn, Cu, etc.) via employing new heteroatoms, e.g., P and S, remains challenging. In this study, carbon nanosheets embedded with nitrogen and phosphorus dual-coordinated iron active sites (denoted as Fe-N/P-C) were developed and determined using cutting edge techniques. Both experimental and theoretical results suggested that the N and P dual-coordinated iron sites were favorable for oxygen intermediate adsorption/desorption, resulting in accelerated reaction kinetics and promising catalytic oxygen reduction activity. This work not only provides efficient way to prepare well-defined single-atom active sites to boost catalytic performance but also paves the way to identify the dual-coordinated single metal atom sites.

548 citations

Journal ArticleDOI
TL;DR: A new no-reference (NR) image quality assessment (IQA) metric is proposed using the recently revealed free-energy-based brain theory and classical human visual system (HVS)-inspired features to predict an image that the HVS perceives from a distorted image based on the free energy theory.
Abstract: In this paper we propose a new no-reference (NR) image quality assessment (IQA) metric using the recently revealed free-energy-based brain theory and classical human visual system (HVS)-inspired features. The features used can be divided into three groups. The first involves the features inspired by the free energy principle and the structural degradation model. Furthermore, the free energy theory also reveals that the HVS always tries to infer the meaningful part from the visual stimuli. In terms of this finding, we first predict an image that the HVS perceives from a distorted image based on the free energy theory, then the second group of features is composed of some HVS-inspired features (such as structural information and gradient magnitude) computed using the distorted and predicted images. The third group of features quantifies the possible losses of “naturalness” in the distorted image by fitting the generalized Gaussian distribution to mean subtracted contrast normalized coefficients. After feature extraction, our algorithm utilizes the support vector machine based regression module to derive the overall quality score. Experiments on LIVE, TID2008, CSIQ, IVC, and Toyama databases confirm the effectiveness of our introduced NR IQA metric compared to the state-of-the-art.

548 citations

Journal ArticleDOI
TL;DR: Human MSC‐derived MVs were therapeutically effective following E. coli endotoxin‐induced ALI in mice in part through the expression of KGF mRNA in the injured alveolus.
Abstract: We previously found that human mesenchymal stem cells (MSC) or its conditioned medium restored lung protein permeability and reduced alveolar inflammation following Escherichia coli endotoxin-induced acute lung injury (ALI) in an ex vivo perfused human lung in part through the secretion of soluble factors such as keratinocyte growth factor (KGF). Recently, MSC were found to release microvesicles (MVs) that were biologically active because of the presence of mRNA or miRNA with reparative properties. MVs are circular fragments of membrane released from the endosomal compartment as exosomes or shed from the surface membranes. These studies were designed to determine if MVs released by human bone marrow derived MSCs would be effective in restoring lung protein permeability and reducing inflammation in E. coli endotoxin-induced ALI in C57BL/6 mice. The intratracheal instillation of MVs improved several indices of ALI at 48 hours. Compared to endotoxin-injured mice, MVs reduced extravascular lung water by 43% and reduced total protein levels in the bronchoalveolar lavage (BAL) fluid by 35%, demonstrating a reduction in pulmonary edema and lung protein permeability. MVs also reduced the influx of neutrophils and macrophage inflammatory protein-2 levels in the BAL fluid by 73% and 49%, respectively, demonstrating a reduction in inflammation. KGF siRNA-pretreatment of MSC partially eliminated the therapeutic effects of MVs released by MSCs, suggesting that KGF protein expression was important for the underlying mechanism. In summary, human MSC-derived MVs were therapeutically effective following E. coli endotoxin-induced ALI in mice in part through the expression of KGF mRNA in the injured alveolus.

548 citations

Journal ArticleDOI
TL;DR: It is demonstrated that high excitation irradiance can alleviate concentration quenching in upconversion luminescence when combined with higher activator concentration, which can be increased from 0.5 mol% to 8 mol% Tm(3+) in NaYF₄.
Abstract: Bright luminescence from upconversion nanocrystals can be achieved by combining high-excitation irradiance with a high activator concentration. The enhanced brightness allows a single nanocrystal to be tracked, which can be used in bioimaging applications, for example.

547 citations


Authors

Showing all 158621 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Richard A. Flavell2311328205119
Jie Zhang1784857221720
Yang Yang1712644153049
Lei Jiang1702244135205
Gang Chen1673372149819
Thomas S. Huang1461299101564
Barbara J. Sahakian14561269190
Jean-Laurent Casanova14484276173
Kuo-Chen Chou14348757711
Weihong Tan14089267151
Xin Wu1391865109083
David Y. Graham138104780886
Bin Liu138218187085
Jun Chen136185677368
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

97% related

Fudan University
117.9K papers, 2.6M citations

96% related

Peking University
181K papers, 4.1M citations

95% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023415
20222,315
202120,873
202019,462
201916,699
201814,250