scispace - formally typeset
Search or ask a question
Institution

Shanghai University

EducationShanghai, Shanghai, China
About: Shanghai University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Microstructure & Graphene. The organization has 59583 authors who have published 56840 publications receiving 753549 citations. The organization is also known as: Shànghǎi Dàxué.


Papers
More filters
Journal ArticleDOI
08 Oct 2018
TL;DR: Li et al. as mentioned in this paper showed that single-atom catalysts can be synthesized directly from bulk metals using an ammonia atmosphere, owing to the formation of volatile metal-ammonia species that are trapped by the nitrogen-rich carbon support.
Abstract: Single-atom catalysts exhibit intriguing properties and receive widespread interest for their effectiveness in promoting a variety of catalytic reactions, making them highly desired motifs in materials science. However, common approaches to the synthesis of these materials often require tedious procedures and lack appropriate interactions between the metal atoms and supports. Here, we report a simple and practical strategy to access the large-scale synthesis of single-atom catalysts via direct atoms emitting from bulk metals, and the subsequent trapping on nitrogen-rich porous carbon with the assistance of ammonia. First, the ammonia coordinates with the copper atoms to form volatile Cu(NH3)x species based on the strong Lewis acid–base interaction. Then, following transportation under an ammonia atmosphere, the Cu(NH3)x species are trapped by the defects on the nitrogen-rich carbon support, forming the isolated copper sites. This strategy is readily scalable and has been confirmed as feasible for producing functional single-atom catalysts at industrial levels. Single-atom catalysts have proven successful in many catalytic applications. Now, Li, Wu and co-workers show that single-atom catalysts can be prepared directly from bulk metals using an ammonia atmosphere, owing to the formation of volatile metal–ammonia species that are trapped by the nitrogen-rich carbon support.

646 citations

Journal ArticleDOI
TL;DR: This work reports using first-principles calculations the existence of a negative Poisson's ratio in a single-layer, two-dimensional material, black phosphorus, and originates from its puckered structure, where the pucker can be regarded as a re-entrant structure that is comprised of two coupled orthogonal hinges.
Abstract: The Poisson's ratio is a fundamental mechanical property that relates the resulting lateral strain to applied axial strain. Although this value can theoretically be negative, it is positive for nearly all materials, though negative values have been observed in so-called auxetic structures. However, nearly all auxetic materials are bulk materials whose microstructure has been specifically engineered to generate a negative Poisson's ratio. Here we report using first-principles calculations the existence of a negative Poisson's ratio in a single-layer, two-dimensional material, black phosphorus. In contrast to engineered bulk auxetics, this behaviour is intrinsic for single-layer black phosphorus, and originates from its puckered structure, where the pucker can be regarded as a re-entrant structure that is comprised of two coupled orthogonal hinges. As a result of this atomic structure, a negative Poisson's ratio is observed in the out-of-plane direction under uniaxial deformation in the direction parallel to the pucker.

629 citations

Journal ArticleDOI
TL;DR: This work proposes a novel scheme for separable reversible data hiding in encrypted images by exploiting the spatial correlation in natural image when the amount of additional data is not too large.
Abstract: This work proposes a novel scheme for separable reversible data hiding in encrypted images. In the first phase, a content owner encrypts the original uncompressed image using an encryption key. Then, a data-hider may compress the least significant bits of the encrypted image using a data-hiding key to create a sparse space to accommodate some additional data. With an encrypted image containing additional data, if a receiver has the data-hiding key, he can extract the additional data though he does not know the image content. If the receiver has the encryption key, he can decrypt the received data to obtain an image similar to the original one, but cannot extract the additional data. If the receiver has both the data-hiding key and the encryption key, he can extract the additional data and recover the original content without any error by exploiting the spatial correlation in natural image when the amount of additional data is not too large.

626 citations

Journal ArticleDOI
TL;DR: A novel method of steganographic embedding in digital images is described, in which each secret digit in a (2n+1)-ary notational system is carried by n cover pixels and, at most, only one pixel is increased or decreased by 1.
Abstract: A novel method of steganographic embedding in digital images is described, in which each secret digit in a (2n+1)-ary notational system is carried by n cover pixels and, at most, only one pixel is increased or decreased by 1. In other words, the (2n+1) different ways of modification to the cover pixels correspond to (2n+1) possible values of a secret digit. Because the directions of' modification are fully exploited, the proposed method provides high embedding efficiency that is better than previous techniques

616 citations

Journal ArticleDOI
01 Apr 2019
TL;DR: Wu et al. as mentioned in this paper constructed a series of alloy-supported Ru1 using different PtCu alloys through sequential acid etching and electrochemical leaching, and found a volcano relation between OER activity and the lattice constant of the alloys.
Abstract: Single-atom precious metal catalysts hold the promise of perfect atom utilization, yet control of their activity and stability remains challenging. Here we show that engineering the electronic structure of atomically dispersed Ru1 on metal supports via compressive strain boosts the kinetically sluggish electrocatalytic oxygen evolution reaction (OER), and mitigates the degradation of Ru-based electrocatalysts in an acidic electrolyte. We construct a series of alloy-supported Ru1 using different PtCu alloys through sequential acid etching and electrochemical leaching, and find a volcano relation between OER activity and the lattice constant of the PtCu alloys. Our best catalyst, Ru1–Pt3Cu, delivers 90 mV lower overpotential to reach a current density of 10 mA cm−2, and an order of magnitude longer lifetime over that of commercial RuO2. Density functional theory investigations reveal that the compressive strain of the Ptskin shell engineers the electronic structure of the Ru1, allowing optimized binding of oxygen species and better resistance to over-oxidation and dissolution. While Ru-based electrocatalysts are among the most active for acidic water oxidation, they suffer from severe deactivation. Now, Yuen Wu, Wei-Xue Li and co-workers report a core–shell Ru1–Pt3Cu catalyst with surface-dispersed Ru atoms for a highly active and stable oxygen evolution reaction in acid electrolyte.

616 citations


Authors

Showing all 59993 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Yang Liu1292506122380
Zhen Li127171271351
Xin Wang121150364930
Jian Liu117209073156
Xin Li114277871389
Wei Zhang112118993641
Jianjun Liu112104071032
Liquan Chen11168944229
Jin-Quan Yu11143843324
Jonathan L. Sessler11199748758
Peng Wang108167254529
Qian Wang108214865557
Wei Zhang104291164923
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

92% related

Fudan University
117.9K papers, 2.6M citations

91% related

Huazhong University of Science and Technology
122.5K papers, 2.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023182
2022741
20216,318
20205,569
20195,063
20184,235