scispace - formally typeset
Search or ask a question
Institution

Shanghai University

EducationShanghai, Shanghai, China
About: Shanghai University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Microstructure & Catalysis. The organization has 59583 authors who have published 56840 publications receiving 753549 citations. The organization is also known as: Shànghǎi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, seven compounds, deoxyshikonin (1), β,β-dimethylacrylshikonins (2), isobutylshikonsin (3), shikonshin (4), 5,8-dihydroxy-2-(1-methoxy-4-methyl-3-pentenyl)-1,4-naphthalenedione (5), β-sitosterol (6 ), β-sinthosterol(6), and a mixture of two caffeic acid

172 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated Si poisoning in Al-Si/Al-5Ti-B system by combining state-of-the-art electron microscopy, first-principles calculations and thermodynamic calculations.

172 citations

Journal ArticleDOI
Yue Liu1, Biru Guo1, Xinxin Zou1, Yajie Li1, Siqi Shi1 
TL;DR: The key challenges related to machine learning in rechargeable battery materials science are discussed, including the contradiction between high dimension and small sample, the conflict between the complexity and accuracy of machine learning models, and the inconsistency between learning results and domain expert knowledge.

172 citations

Journal ArticleDOI
TL;DR: A deep learning architecture for automated extraction of learned-from-data image features from the shear-wave elastography (SWE) that integrates feature learning with feature selection on SWE is built and may be potentially used in clinical computer-aided diagnosis of breast cancer.

172 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that both H+/Zn2+ intercalation and conversion reactions occur at different voltages and that the rapid capacity fading can clearly be attributed to the rate-limiting and irreversible conversion reactions at a lower voltage.
Abstract: Rechargeable aqueous Zn-ion batteries (ZIBs) are very promising for large-scale grid energy storage applications owing to their low cost, environmentally benign constituents, excellent safety, and relatively high energy density. Their usage, however, is largely hampered by the fast capacity fade. The complexity of the reactions has resulted in long-standing ambiguities of the chemical pathways of Zn/MnO2 system. In this study, we find that both H+/Zn2+ intercalation and conversion reactions occur at different voltages and that the rapid capacity fading can clearly be ascribed to the rate-limiting and irreversible conversion reactions at a lower voltage. By limiting the irreversible conversion reactions at ∼1.26 V, we successfully demonstrate ultrahigh power and long life that are superior to most of the reported ZIBs or even some lithium-ion batteries.

172 citations


Authors

Showing all 59993 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Yang Liu1292506122380
Zhen Li127171271351
Xin Wang121150364930
Jian Liu117209073156
Xin Li114277871389
Wei Zhang112118993641
Jianjun Liu112104071032
Liquan Chen11168944229
Jin-Quan Yu11143843324
Jonathan L. Sessler11199748758
Peng Wang108167254529
Qian Wang108214865557
Wei Zhang104291164923
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

92% related

Fudan University
117.9K papers, 2.6M citations

91% related

Huazhong University of Science and Technology
122.5K papers, 2.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023182
2022742
20216,322
20205,569
20195,063
20184,235