scispace - formally typeset
Search or ask a question
Institution

Shanghai University

EducationShanghai, Shanghai, China
About: Shanghai University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Microstructure & Graphene. The organization has 59583 authors who have published 56840 publications receiving 753549 citations. The organization is also known as: Shànghǎi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: Insight into CO2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs.
Abstract: High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult CO double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO2 conversion and utilization. Here, we discuss in detail the approaches of CO2 conversion, the developmental history, the basic principles, the economic feasibility of CO2/H2O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.

462 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors examined the internal mechanisms and contingent conditions that link green technology innovation to a firm's financial performance and found that green product innovation mediates the relationship between green process innovation and the firm's performance.

462 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the relationship among innovations capability, innovation type and on the different aspect of firm performance including innovation, market and financial performance based on an empirical study covering insurance industry in Sri Lanka.

455 citations

Journal ArticleDOI
TL;DR: This work uses lamellar microstructure inherited from casting, rolling, and annealing to produce an ultrafine duplex eutectic high entropy alloy with outstanding properties and widens the design toolbox for high-performance materials based upon EHEAs.
Abstract: Realizing improved strength–ductility synergy in eutectic alloys acting as in situ composite materials remains a challenge in conventional eutectic systems, which is why eutectic high-entropy alloys (EHEAs), a newly-emerging multi-principal-element eutectic category, may offer wider in situ composite possibilities. Here, we use an AlCoCrFeNi2.1 EHEA to engineer an ultrafine-grained duplex microstructure that deliberately inherits its composite lamellar nature by tailored thermo-mechanical processing to achieve property combinations which are not accessible to previously-reported reinforcement methodologies. The as-prepared samples exhibit hierarchically-structural heterogeneity due to phase decomposition, and the improved mechanical response during deformation is attributed to both a two-hierarchical constraint effect and a self-generated microcrack-arresting mechanism. This work provides a pathway for strengthening eutectic alloys and widens the design toolbox for high-performance materials based upon EHEAs. Producing in situ composite materials with superior strength and ductility has long been a challenge. Here, the authors use lamellar microstructure inherited from casting, rolling, and annealing to produce an ultrafine duplex eutectic high entropy alloy with outstanding properties.

451 citations

Journal ArticleDOI
TL;DR: It is indicated that activation of β‐catenin signaling in articular chondrocytes in adult mice leads to the premature chONDrocyte differentiation and the development of an OA‐like phenotype.
Abstract: Osteoarthritis (OA) is a degenerative joint disease, and the mechanism of its pathogenesis is poorly understood. Recent human genetic association studies showed that mutations in the Frzb gene predispose patients to OA, suggesting that the Wnt/β-catenin signaling may be the key pathway to the development of OA. However, direct genetic evidence for β-catenin in this disease has not been reported. Because tissue-specific activation of the β-catenin gene (targeted by Col2a1-Cre) is embryonic lethal, we specifically activated the β-catenin gene in articular chondrocytes in adult mice by generating β-catenin conditional activation (cAct) mice through breeding of β-cateninfx(Ex3)/fx(Ex3) mice with Col2a1-CreERT2 transgenic mice. Deletion of exon 3 of the β-catenin gene results in the production of a stabilized fusion β-catenin protein that is resistant to phosphorylation by GSK-3β. In this study, tamoxifen was administered to the 3- and 6-mo-old Col2a1-CreERT2;β-cateninfx(Ex3)/wt mice, and tissues were harvested for histologic analysis 2 mo after tamoxifen induction. Overexpression of β-catenin protein was detected by immunostaining in articular cartilage tissues of β-catenin cAct mice. In 5-mo-old β-catenin cAct mice, reduction of Safranin O and Alcian blue staining in articular cartilage tissue and reduced articular cartilage area were observed. In 8-mo-old β-catenin cAct mice, cell cloning, surface fibrillation, vertical clefting, and chondrophyte/osteophyte formation were observed. Complete loss of articular cartilage layers and the formation of new woven bone in the subchondral bone area were also found in β-catenin cAct mice. Expression of chondrocyte marker genes, such as aggrecan, Mmp-9, Mmp-13, Alp, Oc, and colX, was significantly increased (3- to 6-fold) in articular chondrocytes derived from β-catenin cAct mice. Bmp2 but not Bmp4 expression was also significantly upregulated (6-fold increase) in these cells. In addition, we also observed overexpression of β-catenin protein in the knee joint samples from patients with OA. These findings indicate that activation of β-catenin signaling in articular chondrocytes in adult mice leads to the premature chondrocyte differentiation and the development of an OA-like phenotype. This study provides direct and definitive evidence about the role of β-catenin in the development of OA.

448 citations


Authors

Showing all 59993 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Yang Liu1292506122380
Zhen Li127171271351
Xin Wang121150364930
Jian Liu117209073156
Xin Li114277871389
Wei Zhang112118993641
Jianjun Liu112104071032
Liquan Chen11168944229
Jin-Quan Yu11143843324
Jonathan L. Sessler11199748758
Peng Wang108167254529
Qian Wang108214865557
Wei Zhang104291164923
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

92% related

Fudan University
117.9K papers, 2.6M citations

91% related

Huazhong University of Science and Technology
122.5K papers, 2.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023182
2022741
20216,318
20205,569
20195,063
20184,235