scispace - formally typeset
Search or ask a question
Institution

Shanghai University

EducationShanghai, Shanghai, China
About: Shanghai University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Microstructure & Graphene. The organization has 59583 authors who have published 56840 publications receiving 753549 citations. The organization is also known as: Shànghǎi Dàxué.


Papers
More filters
Journal ArticleDOI
Qun Luo1, Yanlin Guo1, Bin Liu1, Feng Yujun1, Jieyu Zhang1, Qian Li1, Kuo-Chih Chou1 
TL;DR: In this paper, the theory and recent advances on Mg-rare earth (RE) alloys, especially for the interface stability, thermodynamics and kinetics of nucleation and growth of the key phases and matrix phases, together with their relationships with micro-structures, and macroscopic properties, are reviewed.

401 citations

Journal ArticleDOI
TL;DR: In this article, a series of Cd0.2Zn0.8S and UiO-66-NH2 nanocomposites with different contents were fabricated via a facile solvothermal method and evaluated by photocatalytic H2 evolution and CO2 reduction under visible-light irradiation.
Abstract: Metal-organic frameworks (MOFs), a new class of porous crystalline materials, have attracted great interest as fascinating materials for sustainable energy and environmental remediation. However, the functionalization and diversification of MOFs are still challenging and imperative for the development of highly active MOF-based materials. In this study, a series of Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites with different UiO-66-NH2 contents were fabricated via a facile solvothermal method. The photocatalytic performances of the obtained Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites were evaluated by photocatalytic H2 evolution and CO2 reduction under visible-light irradiation. The resultant hybrids exhibit significantly enhanced photocatalytic activity for hydrogen evolution and CO2 reduction as compared with pristine components, and the optimal UiO-66-NH2 content is 20 wt%. The composite can show a hydrogen evolution rate of 5846.5 μmol h−1 g−1 and a CH3OH production rate of 6.8 μmol h−1 g−1. The remarkable enhancement of the photocatalytic activity should be attributed to the efficient charge separation and transfer on the interface between Cd0.2Zn0.8S and UiO-66-NH2. Furthermore, the Cd0.2Zn0.8S@UiO-66-NH2 photocatalysts show excellent stability during photocatalytic hydrogen evolution and CO2 reduction. This work demonstrates that MOF-based composite materials hold great promise for applications in the field of energy conversion and environmental purification.

398 citations

Journal ArticleDOI
TL;DR: This work demonstrates the effectiveness of dense lattice dislocations as a means of lowering κL, but also the importance of engineering both thermal and electronic transport simultaneously when designing high-performance thermoelectrics.
Abstract: Phonon scattering by nanostructures and point defects has become the primary strategy for minimizing the lattice thermal conductivity (κL ) in thermoelectric materials. However, these scatterers are only effective at the extremes of the phonon spectrum. Recently, it has been demonstrated that dislocations are effective at scattering the remaining mid-frequency phonons as well. In this work, by varying the concentration of Na in Pb0.97 Eu0.03 Te, it has been determined that the dominant microstructural features are point defects, lattice dislocations, and nanostructure interfaces. This study reveals that dense lattice dislocations (≈4 × 1012 cm-2 ) are particularly effective at reducing κL . When the dislocation concentration is maximized, one of the lowest κL values reported for PbTe is achieved. Furthermore, due to the band convergence of the alloyed 3% mol. EuTe the electronic performance is enhanced, and a high thermoelectric figure of merit, zT, of ≈2.2 is achieved. This work not only demonstrates the effectiveness of dense lattice dislocations as a means of lowering κL , but also the importance of engineering both thermal and electronic transport simultaneously when designing high-performance thermoelectrics.

394 citations

Journal ArticleDOI
TL;DR: In this article, a Gauss-Newton-based digital image correlation (DIC) method was proposed to eliminate the redundant computations involved in conventional DIC method using forward additive matching strategy and classic Newton-Raphson (FA-NR) algorithm without sacrificing its sub-pixel registration accuracy.
Abstract: High-efficiency and high-accuracy deformation analysis using digital image correlation (DIC) has become increasingly important in recent years, considering the ongoing trend of using higher resolution digital cameras and common requirement of processing a large sequence of images recorded in a dynamic testing. In this work, to eliminate the redundant computations involved in conventional DIC method using forward additive matching strategy and classic Newton–Raphson (FA-NR) algorithm without sacrificing its sub-pixel registration accuracy, we proposed an equivalent but more efficient DIC method by combining inverse compositional matching strategy and Gauss-Newton (IC-GN) algorithm for fast, robust and accurate full-field displacement measurement. To this purpose, first, an efficient IC-GN algorithm, without the need of re-evaluating and inverting Hessian matrix in each iteration, is introduced to optimize the robust zero-mean normalized sum of squared difference (ZNSSD) criterion to determine the desired deformation parameters of each interrogated subset. Then, an improved reliability-guided displacement tracking strategy is employed to achieve further speed advantage by automatically providing accurate and complete initial guess of deformation for the IC-GN algorithm implemented on each calculation point. Finally, an easy-to-implement interpolation coefficient look-up table approach is employed to avoid the repeated calculation of bicubic interpolation at sub-pixel locations. With the above improvements, redundant calculations involved in various procedures (i.e. initial guess of deformation, sub-pixel displacement registration and sub-pixel intensity interpolation) of conventional DIC method are entirely eliminated. The registration accuracy and computational efficiency of the proposed DIC method are carefully tested using numerical experiments and real experimental images. Experimental results verify that the proposed DIC method using IC-GN algorithm and the existing DIC method using classic FA-NR algorithm generate similar results, but the former is about three to five times faster. The proposed reliability-guided IC-GN algorithm is expected to be a new standard full-field displacement tracking algorithm in DIC.

391 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: A novel approach for text detection in natural images that consistently achieves the state-of-the-art performance on three text detection benchmarks: MSRA-TD500, I CDAR2015 and ICDAR2013.
Abstract: In this paper, we propose a novel approach for text detection in natural images. Both local and global cues are taken into account for localizing text lines in a coarse-to-fine procedure. First, a Fully Convolutional Network (FCN) model is trained to predict the salient map of text regions in a holistic manner. Then, text line hypotheses are estimated by combining the salient map and character components. Finally, another FCN classifier is used to predict the centroid of each character, in order to remove the false hypotheses. The framework is general for handling text in multiple orientations, languages and fonts. The proposed method consistently achieves the state-of-the-art performance on three text detection benchmarks: MSRA-TD500, ICDAR2015 and ICDAR2013.

389 citations


Authors

Showing all 59993 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Yang Liu1292506122380
Zhen Li127171271351
Xin Wang121150364930
Jian Liu117209073156
Xin Li114277871389
Wei Zhang112118993641
Jianjun Liu112104071032
Liquan Chen11168944229
Jin-Quan Yu11143843324
Jonathan L. Sessler11199748758
Peng Wang108167254529
Qian Wang108214865557
Wei Zhang104291164923
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

92% related

Fudan University
117.9K papers, 2.6M citations

91% related

Huazhong University of Science and Technology
122.5K papers, 2.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023182
2022741
20216,318
20205,569
20195,063
20184,235