scispace - formally typeset
Search or ask a question
Institution

Shanghai University

EducationShanghai, Shanghai, China
About: Shanghai University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Microstructure & Graphene. The organization has 59583 authors who have published 56840 publications receiving 753549 citations. The organization is also known as: Shànghǎi Dàxué.


Papers
More filters
Journal ArticleDOI
01 Mar 2021-Small
TL;DR: The latest research and progress on 2D MXene-based nanostructures is introduced and discussed, focusing on their preparation methods, properties, and applications for energy storage such as lithium-ion batteries, sodium- ion batteries, lithium-sulfur batteries, and supercapacitors.
Abstract: 2D MXene-based nanomaterials have attracted tremendous attention because of their unique physical/chemical properties and wide range of applications in energy storage, catalysis, electronics, optoelectronics, and photonics. However, MXenes and their derivatives have many inherent limitations in terms of energy storage applications. In order to further improve their performance for practical application, the nanoengineering of these 2D materials is extensively investigated. In this Review, the latest research and progress on 2D MXene-based nanostructures is introduced and discussed, focusing on their preparation methods, properties, and applications for energy storage such as lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, and supercapacitors. Finally, the critical challenges and perspectives required to be addressed for the future development of these 2D MXene-based materials for energy storage applications are presented.

355 citations

Journal ArticleDOI
TL;DR: In this paper, eight commercially harvested apple cultivars were analysed by gas chromatography and high-performance liquid chromatography, in particular the composition and level of sugars, organic acids, amino acids, phenolic compounds and fatty acids.

354 citations

Journal ArticleDOI
TL;DR: In this paper, a series of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites were fabricated via a facile solvothermal method.
Abstract: Metal-organic frameworks (MOFs) have been attracted considerable attention in the field of energy generation and environmental remediation. However, the functionalization and diversification of MOFs are still challenging and imperative for the development of highly active MOF-based materials. In this article, a series of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites with different NH2-MIL-125(Ti) contents were fabricated via a facile solvothermal method. The photocatalytic activities of the obtained samples were evaluated by the photocatalytic H2 production under visible-light illumination (λ > 420 nm). The results showed that the ZnIn2S4 nanosheets were highly dispersed on the surface of NH2-MIL-125(Ti). The ZnIn2S4@NH2-MIL-125(Ti) photocatalysts displayed higher photocatalytic activity than the pristine components for H2 production. The optimal content of NH2-MIL-125(Ti) was about 40 wt% and the corresponding photocatalytic H2 production rate was 2204.2 μmol·h−1·g−1 (with an apparent quantum efficiency of 4.3% at 420 nm), which was 6.5 times higher than that of pure ZnIn2S4. The enhanced photocatalytic activity of ZnIn2S4@NH2-MIL-125(Ti) composites should be attributed to the well-matched band structure and intimate contact interfaces between ZnIn2S4 and NH2-MIL-125(Ti), which led to the effective transfer and separation of the photogenerated charge carriers. Moreover, the ZnIn2S4@NH2-MIL-125(Ti) nanocomposites showed excellent stability during the photocatalytic reactions under visible light. Therefore, these kinds of MOF-based composites have great potentiality in energy conversion fields.

352 citations

Journal ArticleDOI
TL;DR: The concepts of OOAC are introduced and its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs are reviewed.
Abstract: The organ-on-a-chip (OOAC) is in the list of top 10 emerging technologies and refers to a physiological organ biomimetic system built on a microfluidic chip. Through a combination of cell biology, engineering, and biomaterial technology, the microenvironment of the chip simulates that of the organ in terms of tissue interfaces and mechanical stimulation. This reflects the structural and functional characteristics of human tissue and can predict response to an array of stimuli including drug responses and environmental effects. OOAC has broad applications in precision medicine and biological defense strategies. Here, we introduce the concepts of OOAC and review its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs. We further discuss existing challenges and provide future perspectives for its application.

351 citations

Journal ArticleDOI
Kevin Van der Jeught1, Han-Chen Xu1, Yujing Li1, Xiongbin Lu1, Guang Ji1 
TL;DR: In this article, the αamanitin antibody-drug conjugate targeting hemizygous p53 loss was evaluated and new developments with clinical potentials to augment responses to checkpoint inhibitors.
Abstract: Colorectal cancer (CRC) is often diagnosed at an advanced stage when tumor cell dissemination has taken place. Chemo- and targeted therapies provide only a limited increase of overall survival for these patients. The major reason for clinical outcome finds its origin in therapy resistance. Escape mechanisms to both chemo- and targeted therapy remain the main culprits. Here, we evaluate major resistant mechanisms and elaborate on potential new therapies. Amongst promising therapies is α-amanitin antibody-drug conjugate targeting hemizygous p53 loss. It becomes clear that a dynamic interaction with the tumor microenvironment exists and that this dictates therapeutic outcome. In addition, CRC displays a limited response to checkpoint inhibitors, as only a minority of patients with microsatellite instable high tumors is susceptible. In this review, we highlight new developments with clinical potentials to augment responses to checkpoint inhibitors.

349 citations


Authors

Showing all 59993 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Yang Liu1292506122380
Zhen Li127171271351
Xin Wang121150364930
Jian Liu117209073156
Xin Li114277871389
Wei Zhang112118993641
Jianjun Liu112104071032
Liquan Chen11168944229
Jin-Quan Yu11143843324
Jonathan L. Sessler11199748758
Peng Wang108167254529
Qian Wang108214865557
Wei Zhang104291164923
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

92% related

Fudan University
117.9K papers, 2.6M citations

91% related

Huazhong University of Science and Technology
122.5K papers, 2.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023182
2022741
20216,318
20205,569
20195,063
20184,235