scispace - formally typeset
Search or ask a question
Institution

Shanghai University

EducationShanghai, Shanghai, China
About: Shanghai University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Microstructure & Graphene. The organization has 59583 authors who have published 56840 publications receiving 753549 citations. The organization is also known as: Shànghǎi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel in-wheel motor is proposed, which artfully integrates a magnetic gear into a permanent-magnet brushless (PMBL) DC motor so that they can share a common PM rotor, hence offering both high efficiency and high power density.
Abstract: This paper proposes a novel in-wheel motor, which artfully integrates a magnetic gear into a permanent-magnet brushless (PMBL) DC motor so that they can share a common PM rotor, hence offering both high efficiency and high power density. Moreover, the low-speed requirement for direct driving and the high-speed requirement for compact motor design can be achieved simultaneously. A 2-kW 600/4400-rpm magnetic-geared outer-rotor PMBL DC motor is designed and analyzed, which is particularly suitable for battery-powered electric motorcycles

348 citations

Journal ArticleDOI
TL;DR: The results indicate that the ZnO/GO composites are promising disinfection materials to be used in surface coatings on various substrates to effectively inhibit bacterial growth, propagation, and survival in medical devices.
Abstract: New materials with good antibacterial activity and less toxicity to other species attract numerous research interest. Taking advantage of zinc oxide (ZnO) and graphene oxide (GO), the ZnO/GO composites were prepared by a facile one-pot reaction to achieve superior antibacterial properties without damaging other species. In the composites, ZnO nanoparticles (NPs), with a size of about 4 nm, homogeneously anchored onto GO sheets. The typical bacterium Escherichia coli and HeLa cell were used to evaluate the antibacterial activity and cytotoxicity of the ZnO/GO composites, respectively. The synergistic effects of GO and ZnO NPs led to the superior antibacterial activity of the composites. GO helped the dispersion of ZnO NPs, slowed the dissolution of ZnO, acted as the storage site for the dissolved zinc ions, and enabled the intimate contact of E. coli with ZnO NPs and zinc ions as well. The close contact enhanced the local zinc concentration pitting on the bacterial membrane and the permeability of the bact...

347 citations

Journal ArticleDOI
Le Zhao1, Qi Zhang, Weini Ma1, Feng Tian, Hong-yi Shen1, Mingmei Zhou1 
TL;DR: Assessment of the results indicated that administration of CQR may have beneficial effects on ameliorating HFD-induced obesity and reducing H FD-induced gut microbiota dysbiosis, and demonstrated that C QR could modulate the gut microbiota composition.
Abstract: Resveratrol and quercetin, widely found in foods and vegetables, are plant polyphenols reported to have a wide range of biological activities. Despite their limited bioavailabilities, both resveratrol and quercetin are known to exhibit anti-inflammation and anti-obesity effects. We hypothesized that gut microbiota may be a potential target for resveratrol and quercetin to prevent the development of obesity. The aim of this research was to confirm whether a combination of quercetin and resveratrol (CQR) could restore the gut microbiota dysbiosis induced by a high-fat diet (HFD). In this study, Wistar rats were divided into three groups: a normal diet (ND) group, a HFD group and a CQR group. The CQR group was treated with a HFD and administered with a combination of quercetin [30 mg per kg body weight (BW) per day] and resveratrol [15 mg per kg body weight (BW) per day] by oral gavage. At the end of 10 weeks, CQR reduced the body weight gain and visceral (epididymal, perirenal) adipose tissue weight. Moreover, CQR also reduced serum lipids, attenuated serum inflammatory markers [interleukin (IL)-6, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1] and reversed serum biochemical parameters (adiponectin, insulin, leptin, etc.). Importantly, our results demonstrated that CQR could modulate the gut microbiota composition. 16S rRNA gene sequencing revealed that CQR had an impact on gut microbiota, decreasing Firmicutes (P < 0.05) and the proportion of Firmicutes to Bacteroidetes (P = 0.052). CQR also significantly inhibited the relative abundance of Desulfovibrionaceae (P < 0.01), Acidaminococcaceae (P < 0.05), Coriobacteriaceae (P < 0.05), Bilophila (P < 0.05), Lachnospiraceae (P < 0.05) and its genus Lachnoclostridium (P < 0.001), which were reported to be potentially related to diet-induced obesity. Moreover, compared with the HFD group, the relative abundance of Bacteroidales_S24-7_group (P < 0.01), Christensenellaceae (P < 0.001), Akkermansia (P < 0.01), Ruminococcaceae (P < 0.01) and its genera Ruminococcaceae_UCG-014 (P < 0.01), and Ruminococcaceae_UCG-005 (P < 0.01), which were reported to have an effect of relieving HFD-induced obesity, was markedly increased in the CQR group. Overall, these results indicated that administration of CQR may have beneficial effects on ameliorating HFD-induced obesity and reducing HFD-induced gut microbiota dysbiosis.

347 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the development of the use of layered double hydroxides (LDHs) and their derivatives as heterogeneous and recyclable catalysts/catalyst supports for various reactions in the period of 2005 to early 2010.

344 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that focus on the shape-controlled synthesis methods of ceria nanostructures and their catalytic applications and a personal perspective on the probable challenges and developments of the controllable synthesis of CeO(2) nanomaterials.
Abstract: Because of their excellent properties and extensive applications, ceria nanomaterials have attracted much attention in recent years. This perspective provides a comprehensive review of current research activities that focus on the shape-controlled synthesis methods of ceria nanostructures. We elaborate on the synthesis strategies in the following four sections: (i) oriented growth directed by the crystallographic structure of cerium-based materials; (ii) oriented growth directed by the use of an appropriate capping reagent; (iii) growth confined or dictated by various templates; (iv) other potential methods for generating CeO(2) nanomaterials. In this perspective, we also discuss the catalytic applications of ceria nanostructures. They are often used as active components or supports in many catalytic reactions and their catalytic activities show morphology dependence. We review the morphology dependence of their catalytic performances in carbon monoxide oxidation, water-gas shift, nitric oxide reduction, and reforming reactions. At the end of this review, we give a personal perspective on the probable challenges and developments of the controllable synthesis of CeO(2) nanomaterials and their catalytic applications.

343 citations


Authors

Showing all 59993 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Yang Liu1292506122380
Zhen Li127171271351
Xin Wang121150364930
Jian Liu117209073156
Xin Li114277871389
Wei Zhang112118993641
Jianjun Liu112104071032
Liquan Chen11168944229
Jin-Quan Yu11143843324
Jonathan L. Sessler11199748758
Peng Wang108167254529
Qian Wang108214865557
Wei Zhang104291164923
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

92% related

Zhejiang University
183.2K papers, 3.4M citations

92% related

Fudan University
117.9K papers, 2.6M citations

91% related

Huazhong University of Science and Technology
122.5K papers, 2.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023182
2022741
20216,318
20205,569
20195,063
20184,235