scispace - formally typeset
Search or ask a question
Institution

Shihezi University

EducationShihezi, China
About: Shihezi University is a education organization based out in Shihezi, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 9490 authors who have published 6497 publications receiving 76672 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown using in vitro and in vivo models that active TGF-β1 released during bone resorption coordinates bone formation by inducing migration of bone marrow stromal cells, also known as bone mesenchymal stem cells, to theBone resorptive sites and that this process is mediated through a SMAD signaling pathway.
Abstract: Bone remodeling depends on the precise coordination of bone resorption and subsequent bone formation. Disturbances of this process are associated with skeletal diseases, such as Camurati-Engelmann disease (CED). We show using in vitro and in vivo models that active TGF-beta1 released during bone resorption coordinates bone formation by inducing migration of bone marrow stromal cells, also known as bone mesenchymal stem cells, to the bone resorptive sites and that this process is mediated through a SMAD signaling pathway. Analyzing mice carrying a CED-derived mutant TGFB1 (encoding TGF-beta1), which show the typical progressive diaphyseal dysplasia seen in the human disease, we found high levels of active TGF-beta1 in the bone marrow. Treatment with a TGF-beta type I receptor inhibitor partially rescued the uncoupled bone remodeling and prevented the fractures. Thus, as TGF-beta1 functions to couple bone resorption and formation, modulation of TGF-beta1 activity could be an effective treatment for bone remodeling diseases.

962 citations

Journal ArticleDOI
TL;DR: Microarray analysis indicated that NFYA5 is crucial for the expression of a number of drought stress–responsive genes, and its induction by drought stress occurs at both the transcriptional and posttranscriptional levels.
Abstract: Nuclear factor Y (NF-Y) is a ubiquitous transcription factor composed of three distinct subunits (NF-YA, NF-YB, and NF-YC). We found that the Arabidopsis thaliana NFYA5 transcript is strongly induced by drought stress in an abscisic acid (ABA)-dependent manner. Promoter:β-glucuronidase analyses showed that NFYA5 was highly expressed in vascular tissues and guard cells and that part of the induction by drought was transcriptional. NFYA5 contains a target site for miR169, which targets mRNAs for cleavage or translational repression. We found that miR169 was downregulated by drought stress through an ABA-dependent pathway. Analysis of the expression of miR169 precursors showed that miR169a and miR169c were substantially downregulated by drought stress. Coexpression of miR169 and NFYA5 suggested that miR169a was more efficient than miR169c at repressing the NFYA5 mRNA level. nfya5 knockout plants and plants overexpressing miR169a showed enhanced leaf water loss and were more sensitive to drought stress than wild-type plants. By contrast, transgenic Arabidopsis plants overexpressing NFYA5 displayed reduced leaf water loss and were more resistant to drought stress than the wild type. Microarray analysis indicated that NFYA5 is crucial for the expression of a number of drought stress–responsive genes. Thus, NFYA5 is important for drought resistance, and its induction by drought stress occurs at both the transcriptional and posttranscriptional levels.

813 citations

Journal ArticleDOI
07 Mar 2018-Nature
TL;DR: The outcome of concerted efforts in engaging millions of Chinese smallholder farmers to adopt enhanced management practices for greater yield and environmental performance is reported and the potential impacts of implementing theEnhanced management practices on China’s food security and sustainability outlook are demonstrated.
Abstract: Millions of Chinese smallholder farmers were persuaded to adopt enhanced management practices, which led to a greater yield, reduced nitrogen fertilizer use and improved environmental performance throughout China. Two and a half billion smallholder farmers collectively manage 60 per cent of the world's arable land. How these farmers perform determines their own livelihood, but also affects global food security and ecosystem health. Here, Fusuo Zhang and colleagues show how some straightforward interventions have substantially improved the productivity and environmental performance of smallholder farmers across China over the past ten years. The team carried out more than 13,000 field trials across China's main agroecological zones and found that a series of management practices, collectively termed integrated soil–crop system management, increased maize, wheat and rice yields, nitrogen-use efficiency and farmer profitability. Scaling this approach up to 20.9 million smallholder farmer across 452 counties boosted grain yields to 33 million tonnes over the ten-year period, and reduced fertilizer use by 1.2 million tonnes and greenhouse gas emissions by up to 13 per cent. Sustainably feeding a growing population is a grand challenge1,2,3, and one that is particularly difficult in regions that are dominated by smallholder farming. Despite local successes4,5,6,7,8, mobilizing vast smallholder communities with science- and evidence-based management practices to simultaneously address production and pollution problems has been infeasible. Here we report the outcome of concerted efforts in engaging millions of Chinese smallholder farmers to adopt enhanced management practices for greater yield and environmental performance. First, we conducted field trials across China’s major agroecological zones to develop locally applicable recommendations using a comprehensive decision-support program. Engaging farmers to adopt those recommendations involved the collaboration of a core network of 1,152 researchers with numerous extension agents and agribusiness personnel. From 2005 to 2015, about 20.9 million farmers in 452 counties adopted enhanced management practices in fields with a total of 37.7 million cumulative hectares over the years. Average yields (maize, rice and wheat) increased by 10.8–11.5%, generating a net grain output of 33 million tonnes (Mt). At the same time, application of nitrogen decreased by 14.7–18.1%, saving 1.2 Mt of nitrogen fertilizers. The increased grain output and decreased nitrogen fertilizer use were equivalent to US$12.2 billion. Estimated reactive nitrogen losses averaged 4.5–4.7 kg nitrogen per Megagram (Mg) with the intervention compared to 6.0–6.4 kg nitrogen per Mg without. Greenhouse gas emissions were 328 kg, 812 kg and 434 kg CO2 equivalent per Mg of maize, rice and wheat produced, respectively, compared to 422 kg, 941 kg and 549 kg CO2 equivalent per Mg without the intervention. On the basis of a large-scale survey (8.6 million farmer participants) and scenario analyses, we further demonstrate the potential impacts of implementing the enhanced management practices on China’s food security and sustainability outlook.

629 citations

Journal ArticleDOI
TL;DR: It is reported that IGF-1 released from the bone matrix during bone remodeling stimulates osteoblastic differentiation of recruited mesenchymal stem cells by activation of mammalian target of rapamycin (mTOR), thus maintaining proper bone microarchitecture and mass.
Abstract: Insulin-like growth factor 1 (IGF-1), the most abundant growth factor in the bone matrix, maintains bone mass in adulthood. We now report that IGF-1 released from the bone matrix during bone remodeling stimulates osteoblastic differentiation of recruited mesenchymal stem cells (MSCs) by activation of mammalian target of rapamycin (mTOR), thus maintaining proper bone microarchitecture and mass. Mice with knockout of the IGF-1 receptor (Igf1r) in their pre-osteoblastic cells showed lower bone mass and mineral deposition rates than wild-type mice. Further, MSCs from Igf1rflox/flox mice with Igf1r deleted by a Cre adenovirus in vitro, although recruited to the bone surface after implantation, were unable to differentiate into osteoblasts. We also found that the concentrations of IGF-1 in the bone matrix and marrow of aged rats were lower than in those of young rats and directly correlated with the age-related decrease in bone mass. Likewise, in age-related osteoporosis in humans, we found that bone marrow IGF-1 concentrations were 40% lower in individuals with osteoporosis than in individuals without osteoporosis. Notably, injection of IGF-1 plus IGF binding protein 3 (IGFBP3), but not injection of IGF-1 alone, increased the concentration of IGF-1 in the bone matrix and stimulated new bone formation in aged rats. Together, these results provide mechanistic insight into how IGF-1 maintains adult bone mass, while also providing a further rationale for its therapeutic targeting to treat age-related osteoporosis.

471 citations

Journal ArticleDOI
TL;DR: The proposed photocatalyst can efficiently and rapidly degrade azo dyes and can be applied to the treatment of wastewater contaminated with synthetic dyes, which is economical and environment-friendly.
Abstract: Zinc oxide (ZnO) photocatalysts were synthesized by sol–gel method using zinc acetate as precursor for degradation of azo dyes under UV irradiation. The resultant samples were characterized by different techniques, such as XRD, SEM, and EDX. The influence of preparation conditions such as calcination temperature and composite ratio on the degradation of methyl orange (MO) was investigated. ZnO prepared with a composite ratio of 4:1 and calcination temperature of 400 °C exhibited 99.70% removal rate for MO. The effect of operation parameters on the degradation was also studied. Results showed that the removal rate of azo dyes increased with the increased dosage of catalyst and decreased initial concentration of azo dyes and the acidic condition is favorable for degradation. Furthermore, the kinetics and scavengers of the reactive species during the degradation were also investigated. It was found that the degradation of azo dyes fitted the first-order kinetics and superoxide ions were the main species. The proposed photocatalyst can efficiently and rapidly degrade azo dyes; thus, this economical and environment-friendly photocatalyst can be applied to the treatment of wastewater contaminated with synthetic dyes.

461 citations


Authors

Showing all 9549 results

NameH-indexPapersCitations
Vijay P. Singh106169955831
Wei Liu102292765228
Xiang Gao92135942047
Zhongyi Jiang9062829467
Yong Xu88139139268
Xiaolong Wang8196631455
Yu Zhang7787126480
Junhua Li7748021626
Xi Chen6787719021
Wei Wang6750115823
Colin W. Binns6162115583
Chuanyue Wu5916611377
Kuo-Wei Huang5933911089
Chao Wang5894414130
Chuanyi Wang5624710082
Network Information
Related Institutions (5)
Sichuan University
102.8K papers, 1.6M citations

88% related

Jilin University
88.9K papers, 1.4M citations

88% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Shandong University
99.1K papers, 1.6M citations

88% related

Zhejiang University
183.2K papers, 3.4M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202327
2022116
2021975
2020792
2019745
2018509