scispace - formally typeset
Search or ask a question
Institution

Shiv Nadar University

EducationDadri, Uttar Pradesh, India
About: Shiv Nadar University is a education organization based out in Dadri, Uttar Pradesh, India. It is known for research contribution in the topics: Population & Graphene. The organization has 1015 authors who have published 1924 publications receiving 18420 citations.


Papers
More filters
Book ChapterDOI
01 Jan 2019
TL;DR: The role of the SPIONs in the formation of the ferrofluids along with their stabilization process via diverse interactions is described and their intrinsic cancer theranostic efficacies might alter due to the differences in their physicochemical/dispersibility/magnetic properties.
Abstract: In the last few decades, superparamagnetic iron oxide nanoparticles (SPIONs—particularly magnetite (Fe3O4)/maghemite (Fe2O3) nanoparticles) have gained a great deal of attention in many biomedical applications, including magnetic targeting based cell isolation/sorting, tissue engineering, gene delivery, and magnetofection, due to their unique magnetic properties, excellent chemical stability, biodegradability, and low toxicity as compared to other magnetic materials (for instance, Co, Mn, and Ni). But recently, SPIONs (in the form of ferrofluids—i.e., SPIONs dispersed in a carrier fluid) have become a highly promising candidate for their use as therapeutic and diagnostic (theranostic) agents in cancer treatment applications such as magnetic fluid hyperthermia (MFH) and magnetic resonance imaging (MRI), respectively. However, the theranostic efficacies of the SPIONs (or ferrofluids) might alter due to the differences in their physicochemical/dispersibility/magnetic properties that are significantly impacted by their synthesis methods and their stabilization process. In this chapter, we have initially discussed the crystal structure/composition and different synthesis methods of the SPIONs. Then, we have described the role of the SPIONs in the formation of the ferrofluids along with their stabilization process via diverse interactions. Finally, we have discussed about their (1) intrinsic cancer theranostic applications of SPIONs such as magnetic fluid hyperthermia, magnetic resonance imaging, and magnetic nanoparticle-based drug delivery and (2) combined cancer theranostics applications including MRI as an adjuvant to fluorescence imaging, thermo-chemotherapy, thermo-radiotherapy, and thermo-immunotherapy.

12 citations

Journal ArticleDOI
TL;DR: Game theory and graph theory are used to model and design a wildlife corridor in the Central India – Eastern Ghats landscape complex, with tiger as the focal species and a cost matrix is constructed to indicate the cost incurred by the tiger for passage between the habitat patches in the landscape.

12 citations

Journal ArticleDOI
02 Aug 2021
TL;DR: In this article, the effects of various surface tailoring strategies on the physicomechanical, thermal, water uptake, and humidity absorption characteristics of the Hibiscus sabdariffa fiber have been surveyed to establish surface-tailoring strategies and fibre dimension modification as feasible processes for producing useful HibiscUS sabdarifa fibres to address industrial needs.
Abstract: Plant fibres are helically twisted cellulosic materials that are bonded together by lignin and hemicellulose matrices. Their physical, mechanical, and chemical properties depend enormously on the relative proportions of their chemical constituents, the atmospheric conditions, the age of the plant, and the collection time, among other factors. Hibiscus sabdariffa fibre is obtained by processing the stems or seeds of the Hibiscus sabdariffa plant (Hibiscus sabdariffa L.), which is an evergreen plant that is grown in almost all tropical regions of the world. Polymer composites or membranes developed utilizing plant fibres exhibit astonishing chemical resistance and mechanical and thermal properties, which are attributed to their chemical constituents, low density, and structural dimensions. However, further augmentation of the pre-existing properties of plant-fibre-fortified bio-composites can be achieved via enhancing the bonding between the hydrophilic plant fibres and the hydrophobic matrix, which should be possible by tailoring the surfaces of the plant fibres. In the present article, the methods and techniques employed for the extraction of Hibiscus sabdariffa fibre and its conversion into micro- and nano-forms are discussed. In addition, the effects of numerous surface tailoring strategies on the physicomechanical, thermal, water uptake, and humidity absorption characteristics of Hibiscus sabdariffa fibre have been surveyed to establish surface tailoring strategies and fibre dimension modification as feasible processes for producing useful Hibiscus sabdariffa fibres to address industrial needs. The surface-tailored plant macro-/micro-/nanofibres can fortify bio-composites and thus improve the utilization of Hibiscus sabdariffa fibre as a dependable and reasonable material for industrial purposes, which in turn may help to meet worldwide targets for creating and developing biomaterials for a better future.

12 citations

Journal ArticleDOI
TL;DR: This study furnished critical insights into microglia dynamics across human brain ages and cataloged potential transcriptomic fingerprints that can be further exploited for designing novel neurotherapeutics.
Abstract: Microglial cells form a context-dependent network of brain immunoeffector cells. Despite their indispensable roles, unresolved questions exist around biomarker discovery relevant to their cellular localization, self-renewing potential, and brain developmental dynamics. To resolve the existent gap in the annotation of candidate biomarkers, we conducted a meta-analysis of brain cells using available high-throughput data sets for deciphering microglia-specific expression profiles. We have identified 3,290 significant genes specific to microglia and further selected the top 20 dysregulated genes on the basis of p-value and log2FC. To this list, we added 7 known microglia-specific markers making the candidate list comprising 27 genes for further downstream analyses. Next, we established a connectome of these potential markers with their putative protein partners, which demonstrated strong associations of upregulated genes like Dedicator of cytokinesis 2 (DOCK2) with early/mature microglial markers such as Sphingosine kinase 1 (SPHK1), CD68, and CD45. To elucidate their respective brain anatomical location, we deconvoluted the BrainSpan Atlas expression data. This analysis showed high expression of the majority of candidate genes in microglia-dense regions (Amygdala, Hippocampus, Striatum) in the postnatal brain. Furthermore, to decipher their localized expression across brain ages, we constructed a developmental dynamics map (DDM) comprising extensive gene expression profiles throughout prenatal to postnatal stages, which resulted in the discovery of novel microglia-specific gene signatures. One of the interesting readout from DDM is that all the microglia-dense regions exhibit dynamic regulation of few genes at 37 post conception week (pcw), the transition period between pre- and postnatal stages. To validate these findings and correlate them as potential biomarkers, we analyzed the expression of corresponding proteins in hESC-derived human microglia precursors. The cultured microglial precursors showed expression of Pentraxin 3 (PTX3) and SPHK1 as well as several known markers like CD68, Allograft inflammatory factor 1 (AIF1/IBA1). In summary, this study has furnished critical insights into microglia dynamics across human brain ages and cataloged potential transcriptomic fingerprints that can be further exploited for designing novel neurotherapeutics.

12 citations

Journal ArticleDOI
TL;DR: This letter considers the minimum mean-square error receiver for the generalized frequency division multiplexing system (GFDM) over frequency selective fading channels and derives an approximate probability density function for the signal-to-interference-plus-noise ratio.
Abstract: In this letter, we consider the minimum mean-square error receiver for the generalized frequency division multiplexing system (GFDM) over frequency selective fading channels. We derive an approximate probability density function for the signal-to-interference-plus-noise ratio. This expression allows us to obtain a new approximate, but rather accurate formulation for the bit error probability for a $\mathcal {M}$ -quadrature amplitude modulation scheme. Our results resort on the pivotal properties exhibited by eigenvalues of a circulant matrix. Since the entries of the channel matrix $\text {H}_{\text {ch}}$ are complex Gaussian distributed, and the eigenvalues are given as a weighted sum of its entries, the joint eigenvalue distribution is also Gaussian. Comparisons of the simulated and analytical results validate our formulation and allow a quick and efficient tool to compute the bit error rate for the GFDM system.

12 citations


Authors

Showing all 1055 results

NameH-indexPapersCitations
Dinesh Mohan7928335775
Vijay Kumar Thakur7437517719
Robert A. Taylor6257215877
Himanshu Pathak5625911203
Gurmit Singh542708565
Vijay Kumar5177310852
Dimitris G. Kaskaoutis431355248
Ken Haenen392886296
Vikas Dudeja391434733
P. K. Giri381584528
Swadesh M Mahajan382555389
Rohini Garg37884388
Rajendra Bhatia361549275
Rakesh Ganguly352404415
Sonal Singhal341804174
Network Information
Related Institutions (5)
Jadavpur University
27.6K papers, 422K citations

90% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

89% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

88% related

Indian Institute of Technology Roorkee
21.4K papers, 419.9K citations

88% related

Indian Institute of Science
62.4K papers, 1.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202256
2021356
2020322
2019227
2018176