scispace - formally typeset
Search or ask a question
Institution

Shiv Nadar University

EducationDadri, Uttar Pradesh, India
About: Shiv Nadar University is a education organization based out in Dadri, Uttar Pradesh, India. It is known for research contribution in the topics: Population & Graphene. The organization has 1015 authors who have published 1924 publications receiving 18420 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents an intelligent wind speed sensor less maximum power point tracking method for a variable speed wind energy conversion system (VS-WECS) based on a Q-Learning algorithm which is equipped with peak detection technique, which drives the system towards peak power even if learning is incomplete which makes the real time tracking faster.
Abstract: This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system (VS-WECS) based on a Q-Learning algorithm. The Q-Learning algorithm consists of Q-values for each state action pair which is updated using reward and learning rate. Inputs to define these states are electrical power received by grid and rotational speed of the generator. In this paper, Q-Learning is equipped with peak detection technique, which drives the system towards peak power even if learning is incomplete which makes the real time tracking faster. To make the learning uniform, each state has its separate learning parameter instead of common learning parameter for all states as is the case in conventional Q-Learning. Therefore, if half learned system is running at peak point, it does not affect the learning of unvisited states. Also, wind speed change detection is combined with proposed algorithm which makes it eligible to work for varying wind speed conditions. In addition, the information of wind turbine characteristics and wind speed measurement is not needed. The algorithm is verified through simulations and experimentation and also compared with perturbation and observation (P&O) algorithm.

40 citations

Journal ArticleDOI
TL;DR: It could be shown that N-methylimidazole based thiones/selones having an N-CH2CH2OH substituent are remarkably effective in detoxifying various organomercurials to produce less toxic HgE (E=S, Se) nanoparticles.
Abstract: Organomercurials including methylmercury are ubiquitous environmental pollutants and highly toxic to humans. Now it could be shown that N-methylimidazole based thiones/selones having an N-CH2CH2OH substituent are remarkably effective in detoxifying various organomercurials to produce less toxic HgE (E=S, Se) nanoparticles. Compounds lacking the N-CH2CH2OH substituent failed to produce HgE nanoparticles upon treatment with organomercurials, suggesting that this moiety plays a crucial role in the detoxification by facilitating the desulfurization and deselenization processes. This novel way of detoxifying organomercurials may lead to the discovery of new compounds to treat patients suffering from methylmercury poisoning.

40 citations

Journal ArticleDOI
TL;DR: This work employed single‐molecule Förster resonance energy transfer measurements to capture distinct intradomain conformational states of a region within the DnaK‐SBD known as the lid, and conclusively demonstrate prominent conformational heterogeneity of the DNAK lid in ADP‐bound states.
Abstract: DnaK or Hsp70 of Escherichia coli is a master regulator of the bacterial proteostasis network. Allosteric communication between the two functional domains of DnaK, the N-terminal nucleotide-binding domain (NBD) and the C-terminal substrate- or peptide-binding domain (SBD) regulate its activity. X-ray crystallography and NMR studies have provided snapshots of distinct conformations of Hsp70 proteins in various physiological states; however, the conformational heterogeneity and dynamics of allostery-driven Hsp70 activity remains underexplored. In this work, we employed single-molecule Forster resonance energy transfer (sm-FRET) measurements to capture distinct intradomain conformational states of a region within the DnaK-SBD known as the lid. Our data conclusively demonstrate prominent conformational heterogeneity of the DnaK lid in ADP-bound states; in contrast, the ATP-bound open conformations are homogeneous. Interestingly, a nonhydrolysable ATP analogue, AMP-PNP, imparts heterogeneity to the lid conformations mimicking the ADP-bound state. The cochaperone DnaJ confers ADP-like heterogeneous lid conformations to DnaK, although the presence of the cochaperone accelerates the substrate-binding rate by a hitherto unknown mechanism. Irrespective of the presence of DnaJ, binding of a peptide substrate to the DnaK-SBD leads to prominent lid closure. Lid closure is only partial upon binding to molten globule-like authentic cellular substrates, probably to accommodate non-native substrate proteins of varied structures.

40 citations

Journal ArticleDOI
13 Apr 2021-Polymers
TL;DR: In this paper, the authors classified polybenzoxazine polymers based on their synthesis and evolution of structure, which led to classification of PBz in different generations, and discussed the role of additional functionalities in influencing the temperature of polymerization.
Abstract: Due to their outstanding and versatile properties, polybenzoxazines have quickly occupied a great niche of applications. Developing the ability to polymerize benzoxazine resin at lower temperatures than the current capability is essential in taking advantage of these exceptional properties and remains to be most challenging subject in the field. The current review is classified into several parts to achieve this goal. In this review, fundamentals on the synthesis and evolution of structure, which led to classification of PBz in different generations, are discussed. Classifications of PBzs are defined depending on building block as well as how structure is evolved and property obtained. Progress on the utility of biobased feedstocks from various bio-/waste-mass is also discussed and compared, wherever possible. The second part of review discusses the probable polymerization mechanism proposed for the ring-opening reactions. This is complementary to the third section, where the effect of catalysts/initiators has on triggering polymerization at low temperature is discussed extensively. The role of additional functionalities in influencing the temperature of polymerization is also discussed. There has been a shift in paradigm beyond the lowering of ring-opening polymerization (ROP) temperature and other areas of interest, such as adaptation of molecular functionality with simultaneous improvement of properties.

40 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the seasonal dynamics and coupling mechanism between carbon and water fluxes in deciduous subtropical coniferous vegetation in the western Himalayas, and found that the degree of coupling between water and carbon exchange was strongest in the post-monsoon and spring seasons, and weaker during winter and monsoon seasons.

39 citations


Authors

Showing all 1055 results

NameH-indexPapersCitations
Dinesh Mohan7928335775
Vijay Kumar Thakur7437517719
Robert A. Taylor6257215877
Himanshu Pathak5625911203
Gurmit Singh542708565
Vijay Kumar5177310852
Dimitris G. Kaskaoutis431355248
Ken Haenen392886296
Vikas Dudeja391434733
P. K. Giri381584528
Swadesh M Mahajan382555389
Rohini Garg37884388
Rajendra Bhatia361549275
Rakesh Ganguly352404415
Sonal Singhal341804174
Network Information
Related Institutions (5)
Jadavpur University
27.6K papers, 422K citations

90% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

89% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

88% related

Indian Institute of Technology Roorkee
21.4K papers, 419.9K citations

88% related

Indian Institute of Science
62.4K papers, 1.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202256
2021356
2020322
2019227
2018176