scispace - formally typeset
Search or ask a question
Institution

Shriners Hospitals for Children - Galveston

HealthcareGalveston, Texas, United States
About: Shriners Hospitals for Children - Galveston is a healthcare organization based out in Galveston, Texas, United States. It is known for research contribution in the topics: Burn injury & Lean body mass. The organization has 249 authors who have published 420 publications receiving 15311 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Exercise training significantly enhanced lean mass and strength, without observed exacerbation of postburn hypermetabolism, in severely burned pediatric patients.
Abstract: Severe burns cause profound hormonal and metabolic disturbances resulting in hypermetabolism, reflected in extreme elevation of resting energy expenditure (REE) and extensive skeletal muscle catabolism. Aerobic and resistive exercise programs during rehabilitation have shown substantial benefits, although whether such training potentially exacerbates basal metabolism is unknown. Therefore, the effects of exercise training on REE during the rehabilitation of severely burned pediatric patients were examined. Children with 40% total body surface area burns and greater were enrolled at admission to the burn intensive care unit to participate in a 12-week, hospital-based exercise program (EX) or a home-based standard of care program (SOC), commencing 6 months after injury. Twenty-one patients (aged 7-17 years) were enrolled and randomized to SOC (n = 10) or EX (n = 11). Age, sex, and total body surface area burned were similar. Mean change (+/-standard deviation) in REE, normalized to individual lean body mass, was almost negligible between SOC and EX group patients (SOC, 0.03 +/- 17.40% vs EX, 0.01 +/- 26.38%). A significant increase in lean body mass was found for EX patients (SOC, 2.06 +/- 3.17% vs EX, 8.75 +/- 5.65%; P = .004), which persisted when normalized to height (SOC, 0.70 +/- 2.39% vs EX, 6.14 +/- 6.46%; P = .02). Peak torque also improved significantly more in EX patients (SOC, 12.29 +/- 16.49% vs EX, 54.31 +/- 44.25%; P = .02), reflecting improved strength. Exercise training significantly enhanced lean mass and strength, without observed exacerbation of postburn hypermetabolism. Therefore, the use of exercise conditioning as a safe and effective component of pediatric burn rehabilitation is advocated.

67 citations

Journal ArticleDOI
01 Feb 2011-Surgery
TL;DR: The data suggest that propranolol is an efficacious modulator of the postburn cardiac response when given at a dose of 4 mg/kg per day, and decreases and sustains heart rate 15% below admission heart rate.

66 citations

Journal ArticleDOI
TL;DR: The goal of the current article is to review the experimental evidence for the mitochondrial localization of PARP1 and its intra-mitochondrial functions, with focus on cellular bioenergetics, mitochondrial DNA repair and mitochondrial dysfunction, and propose a working model for the interaction of mitochondrial and nuclear PARP during oxidant-induced cell death.

65 citations

Journal ArticleDOI
TL;DR: Treatment of the burn wound with liposomal IGF-1-cDNA transfer decreased IL-1β mRNA levels on day 10 after burn trauma from five-fold burn-induced increases compared with sham-treated rats, to near the control values present in unburned skin samples.
Abstract: Liposomal IGF-1 gene transfer modulates pro- and anti-inflammatory cytokine mRNA expression in the burn wound

65 citations

Journal ArticleDOI
02 Dec 2015-PLOS ONE
TL;DR: The current data show that there are marked time-dependent and tissue-specific alterations in mitochondrial function induced by thermal injury, and suggest that mitochondria-specific damage is one of the earliest responses to burn injury.
Abstract: Severe thermal injury induces a pathophysiological response that affects most of the organs within the body; liver, heart, lung, skeletal muscle among others, with inflammation and hyper-metabolism as a hallmark of the post-burn damage. Oxidative stress has been implicated as a key component in development of inflammatory and metabolic responses induced by burn. The goal of the current study was to evaluate several critical mitochondrial functions in a mouse model of severe burn injury. Mitochondrial bioenergetics, measured by Extracellular Flux Analyzer, showed a time dependent, post-burn decrease in basal respiration and ATP-turnover but enhanced maximal respiratory capacity in mitochondria isolated from the liver and lung of animals subjected to burn injury. Moreover, we detected a tissue-specific degree of DNA damage, particularly of the mitochondrial DNA, with the most profound effect detected in lungs and hearts of mice subjected to burn injury. Increased mitochondrial biogenesis in lung tissue in response to burn injury was also observed. Burn injury also induced time dependent increases in oxidative stress (measured by amount of malondialdehyde) and neutrophil infiltration (measured by myeloperoxidase activity), particularly in lung and heart. Tissue mononuclear cell infiltration was also confirmed by immunohistochemistry. The amount of poly(ADP-ribose) polymers decreased in the liver, but increased in the heart in later time points after burn. All of these biochemical changes were also associated with histological alterations in all three organs studied. Finally, we detected a significant increase in mitochondrial DNA fragments circulating in the blood immediately post-burn. There was no evidence of systemic bacteremia, or the presence of bacterial DNA fragments at any time after burn injury. The majority of the measured parameters demonstrated a sustained elevation even at 20–40 days post injury suggesting a long-lasting effect of thermal injury on organ function. The current data show that there are marked time-dependent and tissue-specific alterations in mitochondrial function induced by thermal injury, and suggest that mitochondria-specific damage is one of the earliest responses to burn injury. Mitochondria may be potential therapeutic targets in the future experimental therapy of burns.

63 citations


Authors

Showing all 250 results

NameH-indexPapersCitations
Robert R. Wolfe12456654000
Csaba Szabó12395861791
David N. Herndon108122754888
Steven E. Wolf7441921329
Blake B. Rasmussen6515218951
Marc G. Jeschke6417413903
Daniel L. Traber6262914801
Nicole S. Gibran6027314304
Donald S. Prough5850811644
David L. Chinkes5615111871
Labros S. Sidossis5322411636
Robert E. Barrow511307114
Ashok K. Chopra491997568
James A. Carson491577554
Celeste C. Finnerty4817210647
Network Information
Related Institutions (5)
University of Texas Medical Branch
38.2K papers, 1.5M citations

81% related

Georgia Regents University
28.3K papers, 992.3K citations

79% related

Rush University Medical Center
29K papers, 1.3M citations

79% related

Thomas Jefferson University
38.2K papers, 1.7M citations

79% related

Vanderbilt University Medical Center
34.6K papers, 1.1M citations

79% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20221
20215
202026
201928
201822
201746