scispace - formally typeset
Search or ask a question

Showing papers by "Sichuan University published in 2017"


Journal ArticleDOI
TL;DR: Tumor Immune Estimation Resource (TIMER) is presented to comprehensively investigate molecular characterization of tumor-immune interactions and provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers.
Abstract: Recent clinical successes of cancer immunotherapy necessitate the investigation of the interaction between malignant cells and the host immune system. However, elucidation of complex tumor-immune interactions presents major computational and experimental challenges. Here, we present Tumor Immune Estimation Resource (TIMER; cistrome.shinyapps.io/timer) to comprehensively investigate molecular characterization of tumor-immune interactions. Levels of six tumor-infiltrating immune subsets are precalculated for 10,897 tumors from 32 cancer types. TIMER provides 6 major analytic modules that allow users to interactively explore the associations between immune infiltrates and a wide spectrum of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number alterations. TIMER provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers. Cancer Res; 77(21); e108-10. ©2017 AACR.

3,236 citations


Journal ArticleDOI
TL;DR: This work combines the autoencoder, deconvolution network, and shortcut connections into the residual encoder–decoder convolutional neural network (RED-CNN) for low-dose CT imaging and achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases.
Abstract: Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data, whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder–decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases. Especially, our method has been favorably evaluated in terms of noise suppression, structural preservation, and lesion detection.

1,161 citations


Journal ArticleDOI
Beatriz Pelaz1, Christoph Alexiou2, Ramon A. Alvarez-Puebla3, Frauke Alves4, Frauke Alves5, Anne M. Andrews6, Sumaira Ashraf1, Lajos P. Balogh, Laura Ballerini7, Alessandra Bestetti8, Cornelia Brendel1, Susanna Bosi9, Mónica Carril10, Warren C. W. Chan11, Chunying Chen, Xiaodong Chen12, Xiaoyuan Chen13, Zhen Cheng14, Daxiang Cui15, Jianzhong Du16, Christian Dullin4, Alberto Escudero1, Alberto Escudero17, Neus Feliu18, Mingyuan Gao, Michael D. George, Yury Gogotsi19, Arnold Grünweller1, Zhongwei Gu20, Naomi J. Halas21, Norbert Hampp1, Roland K. Hartmann1, Mark C. Hersam22, Patrick Hunziker23, Ji Jian24, Xingyu Jiang, Philipp Jungebluth25, Pranav Kadhiresan11, Kazunori Kataoka26, Ali Khademhosseini27, Jindřich Kopeček28, Nicholas A. Kotov29, Harald F. Krug30, Dong Soo Lee31, Claus-Michael Lehr32, Kam W. Leong33, Xing-Jie Liang34, Mei Ling Lim18, Luis M. Liz-Marzán10, Xiaowei Ma34, Paolo Macchiarini35, Huan Meng6, Helmuth Möhwald5, Paul Mulvaney8, Andre E. Nel6, Shuming Nie36, Peter Nordlander21, Teruo Okano, Jose Oliveira, Tai Hyun Park31, Reginald M. Penner37, Maurizio Prato10, Maurizio Prato9, Víctor F. Puntes38, Vincent M. Rotello39, Amila Samarakoon11, Raymond E. Schaak40, Youqing Shen24, Sebastian Sjöqvist18, Andre G. Skirtach5, Andre G. Skirtach41, Mahmoud Soliman1, Molly M. Stevens42, Hsing-Wen Sung43, Ben Zhong Tang44, Rainer Tietze2, Buddhisha Udugama11, J. Scott VanEpps29, Tanja Weil5, Tanja Weil45, Paul S. Weiss6, Itamar Willner46, Yuzhou Wu5, Yuzhou Wu47, Lily Yang, Zhao Yue1, Qian Zhang1, Qiang Zhang48, Xian-En Zhang, Yuliang Zhao, Xin Zhou, Wolfgang J. Parak1 
14 Mar 2017-ACS Nano
TL;DR: An overview of recent developments in nanomedicine is provided and the current challenges and upcoming opportunities for the field are highlighted and translation to the clinic is highlighted.
Abstract: The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.

926 citations


Journal ArticleDOI
TL;DR: An Fe-doped CoP nanoarray behaves as a robust 3D monolithic multifunctional catalyst for electrolytic and hydrolytic hydrogen evolution with high activity.
Abstract: An Fe-doped CoP nanoarray behaves as a robust 3D monolithic multifunctional catalyst for electrolytic and hydrolytic hydrogen evolution with high activity Its two-electrode electrolyzer needs a cell voltage of only 160 V for 10 mA cm-2 water-splitting current It also catalyzes effectively NaBH4 hydrolysis with a low activation energy of ≈396 kJ mol-1 and a hydrogen generation rate of 606 L min-1 g-1

842 citations


Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the fundamentals and applications of transition metal-mediated/catalyzed oxidative C-H/C-H coupling reactions between two (hetero)arenes.
Abstract: Transition metal-mediated C–H bond activation and functionalization represent one of the most straightforward and powerful tools in modern organic synthetic chemistry. Bi(hetero)aryls are privileged π-conjugated structural cores in biologically active molecules, organic functional materials, ligands, and organic synthetic intermediates. The oxidative C–H/C–H coupling reactions between two (hetero)arenes through 2-fold C–H activation offer a valuable opportunity for rapid assembly of diverse bi(hetero)aryls and further exploitation of their applications in pharmaceutical and material sciences. This review provides a comprehensive overview of the fundamentals and applications of transition metal-mediated/catalyzed oxidative C–H/C–H coupling reactions between two (hetero)arenes. The substrate scope, limitation, reaction mechanism, regioselectivity, and chemoselectivity, as well as related control strategies of these reactions are discussed. Additionally, the applications of these established methods in the s...

822 citations


Journal ArticleDOI
TL;DR: In this paper, the recent progress of the sodium storage performances of carbonaceous materials, including graphite, amorphous carbon, heteroatom-doped carbon, and biomass derived carbon, are presented and the related sodium storage mechanism is also summarized.
Abstract: The ever-increasing demand of lithium-ion batteries (LIBs) caused by the rapid development of various electronics and electric vehicles will be hindered by the limited lithium resource. Thus sodium-ion batteries (SIBs) have been considered as a promising potential alternative for LIBs owing to the abundant sodium resource and similar electrochemical performances. In recent years, significant achievements regarding anode materials which restricted the development of SIBs in the past decades have been attained. Significantly, the sodium storage feasibility of carbon materials with abundant resource, low cost, nontoxicity and high safety has been confirmed, and extensive investigation have demonstrated that the carbonaceous materials can become promising electrode candidates for SIBs. In this review, the recent progress of the sodium storage performances of carbonaceous materials, including graphite, amorphous carbon, heteroatom-doped carbon, and biomass derived carbon, are presented and the related sodium storage mechanism is also summarized. Additionally, the critical issues, challenges and perspectives are provided to further understand the carbonaceous anode materials.

800 citations


Proceedings ArticleDOI
01 Sep 2017
TL;DR: A novel framework based on neural networks to identify the sentiment of opinion targets in a comment/review that adopts multiple-attention mechanism to capture sentiment features separated by a long distance, so that it is more robust against irrelevant information.
Abstract: We propose a novel framework based on neural networks to identify the sentiment of opinion targets in a comment/review Our framework adopts multiple-attention mechanism to capture sentiment features separated by a long distance, so that it is more robust against irrelevant information The results of multiple attentions are non-linearly combined with a recurrent neural network, which strengthens the expressive power of our model for handling more complications The weighted-memory mechanism not only helps us avoid the labor-intensive feature engineering work, but also provides a tailor-made memory for different opinion targets of a sentence We examine the merit of our model on four datasets: two are from SemEval2014, ie reviews of restaurants and laptops; a twitter dataset, for testing its performance on social media data; and a Chinese news comment dataset, for testing its language sensitivity The experimental results show that our model consistently outperforms the state-of-the-art methods on different types of data

751 citations


Journal ArticleDOI
TL;DR: The efficient generation of 1O2 using the PS/CNTs system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral conditions with the mineralization and toxicity evaluated.

703 citations


Journal ArticleDOI
06 Mar 2017-ACS Nano
TL;DR: This free-standing, adhesive, tough, and biocompatible hydrogel may be more convenient for surgical applications than adhesives that involve in situ gelation and extra agents.
Abstract: Adhesive hydrogels are attractive biomaterials for various applications, such as electronic skin, wound dressing, and wearable devices. However, fabricating a hydrogel with both adequate adhesiveness and excellent mechanical properties remains a challenge. Inspired by the adhesion mechanism of mussels, we used a two-step process to develop an adhesive and tough polydopamine-clay-polyacrylamide (PDA-clay-PAM) hydrogel. Dopamine was intercalated into clay nanosheets and limitedly oxidized between the layers, resulting in PDA-intercalated clay nanosheets containing free catechol groups. Acrylamide monomers were then added and in situ polymerized to form the hydrogel. Unlike previous single-use adhesive hydrogels, our hydrogel showed repeatable and durable adhesiveness. It adhered directly on human skin without causing an inflammatory response and was easily removed without causing damage. The adhesiveness of this hydrogel was attributed to the presence of enough free catechol groups in the hydrogel, which we...

676 citations


Journal ArticleDOI
TL;DR: High-resolution structures of the trimeric MERS- coV and SARS-CoV S proteins in its pre-fusion conformation are presented by single particle cryo-electron microscopy, demonstrating an inherently flexible RBD readily recognized by the receptor.
Abstract: The envelope spike (S) proteins of MERS-CoV and SARS-CoV determine the virus host tropism and entry into host cells, and constitute a promising target for the development of prophylactics and therapeutics. Here, we present high-resolution structures of the trimeric MERS-CoV and SARS-CoV S proteins in its pre-fusion conformation by single particle cryo-electron microscopy. The overall structures resemble that from other coronaviruses including HKU1, MHV and NL63 reported recently, with the exception of the receptor binding domain (RBD). We captured two states of the RBD with receptor binding region either buried (lying state) or exposed (standing state), demonstrating an inherently flexible RBD readily recognized by the receptor. Further sequence conservation analysis of six human-infecting coronaviruses revealed that the fusion peptide, HR1 region and the central helix are potential targets for eliciting broadly neutralizing antibodies.

658 citations


Journal ArticleDOI
TL;DR: It is reported that Ni2 P nanoarrays grown in situ on nickel foam (Ni2 P/NF) behave as a durable high-performance non-noble-metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media.
Abstract: It is highly attractive but challenging to develop earth-abundant electrocatalysts for energy-saving electrolytic hydrogen generation. Herein, we report that Ni2P nanoarrays grown in situ on nickel foam (Ni2P/NF) behave as a durable high-performance non-noble-metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The replacement of the sluggish anodic oxygen evolution reaction with such the more thermodynamically favorable HzOR enables energy-saving electrochemical hydrogen production with the use of Ni2P/NF as a bifunctional catalyst for anodic HzOR and cathodic hydrogen evolution reaction. When operated at room temperature, this two-electrode electrolytic system drives 500 mA cm−2 at a cell voltage as low as 1.0 V with strong long-term electrochemical durability and 100 % Faradaic efficiency for hydrogen evolution in 1.0 m KOH aqueous solution with 0.5 m hydrazine.

Journal ArticleDOI
TL;DR: A deep convolutional neural network is here used to map low-dose CT images towards its corresponding normal-dose counterparts in a patch-by-patch fashion, demonstrating a great potential of the proposed method on artifact reduction and structure preservation.
Abstract: In order to reduce the potential radiation risk, low-dose CT has attracted an increasing attention. However, simply lowering the radiation dose will significantly degrade the image quality. In this paper, we propose a new noise reduction method for low-dose CT via deep learning without accessing original projection data. A deep convolutional neural network is here used to map low-dose CT images towards its corresponding normal-dose counterparts in a patch-by-patch fashion. Qualitative results demonstrate a great potential of the proposed method on artifact reduction and structure preservation. In terms of the quantitative metrics, the proposed method has showed a substantial improvement on PSNR, RMSE and SSIM than the competing state-of-art methods. Furthermore, the speed of our method is one order of magnitude faster than the iterative reconstruction and patch-based image denoising methods.

Journal ArticleDOI
TL;DR: This work identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated.
Abstract: An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive 'liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.

Journal ArticleDOI
TL;DR: MRE and SWE may have the highest diagnostic accuracy for staging fibrosis in NAFLD patients, and among the four noninvasive simple indexes, NFS and FIB‐4 probably offer the best diagnostic performance for detecting AF.

Journal ArticleDOI
TL;DR: This phenomenon could be extended to other betacoronaviruses utilizing CTD1 of the S1 subunit for receptor binding, which provides new insights into the intermediate states of coronavirus pre-fusion spike trimer during infection.
Abstract: The global outbreak of SARS in 2002-2003 was caused by the infection of a new human coronavirus SARS-CoV. The infection of SARS-CoV is mediated mainly through the viral surface glycoproteins, which consist of S1 and S2 subunits and form trimer spikes on the envelope of the virions. Here we report the ectodomain structures of the SARS-CoV surface spike trimer in different conformational states determined by single-particle cryo-electron microscopy. The conformation 1 determined at 4.3 A resolution is three-fold symmetric and has all the three receptor-binding C-terminal domain 1 (CTD1s) of the S1 subunits in "down" positions. The binding of the "down" CTD1s to the SARS-CoV receptor ACE2 is not possible due to steric clashes, suggesting that the conformation 1 represents a receptor-binding inactive state. Conformations 2-4 determined at 7.3, 5.7 and 6.8 A resolutions are all asymmetric, in which one RBD rotates away from the "down" position by different angles to an "up" position. The "up" CTD1 exposes the receptor-binding site for ACE2 engagement, suggesting that the conformations 2-4 represent a receptor-binding active state. This conformational change is also required for the binding of SARS-CoV neutralizing antibodies targeting the CTD1. This phenomenon could be extended to other betacoronaviruses utilizing CTD1 of the S1 subunit for receptor binding, which provides new insights into the intermediate states of coronavirus pre-fusion spike trimer during infection.

Journal ArticleDOI
TL;DR: In this paper, density function theory calculations reveal that nonelectroactive Zn behaves as an effective promoter for CoP-catalyzed hydrogen evolution reaction (HER) in both acidic and alkaline media.
Abstract: As a non-toxic species, Zn fulfills a multitude of biological roles, but its promoting effect on electrocatalysis has been rarely explored. Herein, the theoretic predications and experimental investigations that nonelectroactive Zn behaves as an effective promoter for CoP-catalyzed hydrogen evolution reaction (HER) in both acidic and alkaline media is reported. Density function theory calculations reveal that Zn doing leads to more thermal-neutral hydrogen adsorption free energy and thus enhanced HER activity for CoP catalyst. Electrochemical tests show that a Zn0.08Co0.92P nanowall array on titanium mesh (Zn0.08Co0.92P/TM) needs overpotentials of only 39 and 67 mV to drive a geometrical catalytic current of 10 mA cm-2 in 0.5 m H2SO4 and 1.0 m KOH, respectively. This Zn0.08Co0.92P/TM is also superior in activity over CoP/TM for urea oxidation reaction (UOR), driving 115 mA cm-2 at 0.6 V in 1.0 m KOH with 0.5 m urea. The high HER and UOR activity of this bifunctional electrode enables a Zn0.08Co0.92P/TM-based two-electrode electrolyzer for energy-saving hydrogen production, offering 10 mA cm-2 at a low voltage of 1.38 V with strong long-term electrochemical stability.

Journal ArticleDOI
01 Jan 2017-Small
TL;DR: A graphene oxide conductive hydrogel is reported that simultaneously possesses high toughness, self-healability, and self-adhesiveness and can be used asSelf-adhesive bioelectronics, such as electrical stimulators to regulate cell activity and implantable electrodes for recording in vivo signals.
Abstract: A graphene oxide conductive hydrogel is reported that simultaneously possesses high toughness, self-healability, and self-adhesiveness. Inspired by the adhesion behaviors of mussels, our conductive hydrogel shows self-adhesiveness on various surfaces and soft tissues. The hydrogel can be used as self-adhesive bioelectronics, such as electrical stimulators to regulate cell activity and implantable electrodes for recording in vivo signals.

Journal ArticleDOI
TL;DR: DTINet is introduced, whose performance is enhanced in the face of noisy, incomplete and high-dimensional biological data by learning low-dimensional vector representations, which accurately explains the topological properties of individual nodes in the heterogeneous network.
Abstract: The emergence of large-scale genomic, chemical and pharmacological data provides new opportunities for drug discovery and repositioning. In this work, we develop a computational pipeline, called DTINet, to predict novel drug-target interactions from a constructed heterogeneous network, which integrates diverse drug-related information. DTINet focuses on learning a low-dimensional vector representation of features, which accurately explains the topological properties of individual nodes in the heterogeneous network, and then makes prediction based on these representations via a vector space projection scheme. DTINet achieves substantial performance improvement over other state-of-the-art methods for drug-target interaction prediction. Moreover, we experimentally validate the novel interactions between three drugs and the cyclooxygenase proteins predicted by DTINet, and demonstrate the new potential applications of these identified cyclooxygenase inhibitors in preventing inflammatory diseases. These results indicate that DTINet can provide a practically useful tool for integrating heterogeneous information to predict new drug-target interactions and repurpose existing drugs.Network-based data integration for drug-target prediction is a promising avenue for drug repositioning, but performance is wanting. Here, the authors introduce DTINet, whose performance is enhanced in the face of noisy, incomplete and high-dimensional biological data by learning low-dimensional vector representations.

Journal ArticleDOI
TL;DR: A rapid search in PubMed shows that using "flow cytometry immunology" as a search term yields more than 68 000 articles, the first of which is not about lymphocytes as mentioned in this paper.
Abstract: The marriage between immunology and cytometry is one of the most stable and productive in the recent history of science. A rapid search in PubMed shows that, as of July 2017, using “flow cytometry immunology” as a search term yields more than 68 000 articles, the first of which, interestingly, is not about lymphocytes. It might be stated that, after a short engagement, the exchange of the wedding rings between immunology and cytometry officially occurred when the idea to link fluorochromes to monoclonal antibodies came about. After this, recognizing different types of cells became relatively easy and feasible not only by using a simple fluorescence microscope, but also by a complex and sometimes esoteric instrument, the flow cytometer that is able to count hundreds of cells in a single second, and can provide repetitive results in a tireless manner. Given this, the possibility to analyse immune phenotypes in a variety of clinical conditions has changed the use of the flow cytometer, which was incidentally invented in the late 1960s to measure cellular DNA by using intercalating dyes, such as ethidium bromide. The epidemics of HIV/AIDS in the 1980s then gave a dramatic impulse to the technology of counting specific cells, since it became clear that the quantification of the number of peripheral blood CD4+ T cells was crucial to follow the course of the infection, and eventually for monitoring the therapy. As a consequence, the development of flow cytometers that had to be easy-to-use in all clinical laboratories helped to widely disseminate this technology. Nowadays, it is rare to find an immunological paper or read a conference abstract in which the authors did not use flow cytometry as the main tool to dissect the immune system and identify its fine and complex functions. Of note, recent developments have created the sophisticated technology of mass cytometry, which is able to simultaneously identify dozens of molecules at the single cell level and allows us to better understand the complexity and beauty of the immune system.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the development of Mn-doped CoP (Mn-Co-P/Ti) nanosheets array on Ti mesh as an efficient 3D HER electrocatalyst with good stability.
Abstract: Heteratom doping is a possible way to tune the hydrogen evolution reaction (HER) catalytic capability of electrocatalysts. In this work, we report the development of Mn-doped CoP (Mn–Co–P) nanosheets array on Ti mesh (Mn–Co–P/Ti) as an efficient 3D HER electrocatalyst with good stability at all pH values. Electrochemical tests demonstrate that Mn doping leads to enhanced catalytic activity of CoP. In 0.5 M H2SO4, this Mn–Co–P/Ti catalyst drives 10 mA cm–2 at an overpotential of 49 mV, which is 32 mV less than that for CoP/Ti. To achieve the same current density, it demands overpotentials of 76 and 86 mV in 1.0 M KOH and phosphate-buffered saline, respectively. The enhanced HER activity for Mn–Co–P can be attributed to its more thermo-neutral hydrogen adsorption free energy than CoP, which is supported by density functional theory calculations.

Journal ArticleDOI
Jie Cao1, Canhui Lu1, Jian Zhuang1, Manxiao Liu1, Xinxing Zhang1, Yanmei Yu1, Qingchuan Tao1 
TL;DR: A highly sensitive and self-healing sensor enabled by multiple hydrogen bonding network and nanostructured conductive network is demonstrated and integrated to develop a facial expression control system and an electronic larynx, aiming to control the robot to assist the patient's daily life and help the mute to realize real-time speaking.
Abstract: Despite its widespread use in signal collection, flexible sensor has been rarely used in human-machine interaction due to its indistinguishable signal, poor reliability and stability when suffered from unavoidable scratches and/or mechanical cuts. Here, we demonstrate a highly sensitive and self-healing sensor enabled by multiple hydrogen bonding network and nanostructured conductive network. The nanostructured supramolecular sensor displays extremely fast (~15 s) and repeatable self-healing ability with high healing efficiency (93% after the 3rd healing process). It can precisely detect tiny human motions, demonstrating highly distinguishable and reliable signals even after cutting-healing and bending over 20000 cycles. Furthermore, a human-machine interaction system is integrated to develop a facial expression control system and an electronic larynx, aiming to control the robot to assist the patient's daily life and help the dumb to realize real-time speaking.

Journal ArticleDOI
TL;DR: This work created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid biop printing method - microscale continuous optical bioprinting (μCOB) that can be broadly applicable to the engineering and translation of various functional tissues.

Journal ArticleDOI
TL;DR: A self-healing, super-resilient hydrogel that can accelerate skin regeneration has been made using an adhesive mechanism inspired by mussels using a process that preserves PDA's catechols – substances that impart mussels with high adhesiveness – when embedded in an elastic polymer matrix.
Abstract: An ideal hydrogel for biomedical engineering should mimic the intrinsic properties of natural tissue, especially high toughness and self-healing ability, in order to withstand cyclic loading and repair skin and muscle damage. In addition, excellent cell affinity and tissue adhesiveness enable integration with the surrounding tissue after implantation. Inspired by the natural mussel adhesive mechanism, we designed a polydopamine–polyacrylamide (PDA–PAM) single network hydrogel by preventing the overoxidation of dopamine to maintain enough free catechol groups in the hydrogel. Therefore, the hydrogel possesses super stretchability, high toughness, stimuli-free self-healing ability, cell affinity and tissue adhesiveness. More remarkably, the current hydrogel can repeatedly be adhered on/stripped from a variety of surfaces for many cycles without loss of adhesion strength. Furthermore, the hydrogel can serve as an excellent platform to host various nano-building blocks, in which multiple functionalities are integrated to achieve versatile potential applications, such as magnetic and electrical therapies. A self-healing, super-resilient hydrogel that can accelerate skin regeneration has been made using an adhesive mechanism inspired by mussels. Hydrogels have similar structures to soft biological tissues and have great potential for tissue engineering applications. However, most are too fragile for use in the body and lack the ability to self-heal and adhere to tissue. Now, Xiong Lu from China's Southwest Jiaotong University and co-workers have synthesized a self-healing, super-resilient hydrogel using a process that preserves PDA's catechols – substances that impart mussels with high adhesiveness – when embedded in an elastic polymer matrix. The numerous non-covalent bonds between PDA catechols enable the hydrogel to perfectly re-form after being sliced open and help it stretch over 30 times its initial length without breaking. The material could also carry magnetic or conductive nanoparticles for future integrated healthcare applications. Inspired by mussel chemistry, a novel polydopamine–polyacrymide hydrogel simultaneously possesses super stretchability, stimuli-free self-healing properties, cell affinity and tissue adhesiveness. The current hydrogel lasts its adhesiveness for a long term, and can be repeatedly adhered on/stripped from a variety of substrates. The hydrogel can host various nano-building blocks and be tuned to magnetic and conductive hydrogels with above-mentioned properties.

Journal ArticleDOI
TL;DR: A brief review on mathematical framework, general concepts and common methods of adjustment for multiple comparisons is provided, which is expected to facilitate the understanding and selection of adjustment methods.
Abstract: In experimental research a scientific conclusion is always drawn from the statistical testing of hypothesis, in which an acceptable cutoff of probability, such as 005 or 001, is used for decision-making However, the probability of committing false statistical inferences would considerably increase when more than one hypothesis is simultaneously tested (namely the multiple comparisons), which therefore requires proper adjustment Although the adjustment for multiple comparisons is proposed to be mandatory in some journals, it still remains difficult to select a proper method suitable for the various experimental properties and study purposes, especially for researchers without good background in statistics In the present paper, we provide a brief review on mathematical framework, general concepts and common methods of adjustment for multiple comparisons, which is expected to facilitate the understanding and selection of adjustment methods

Journal ArticleDOI
TL;DR: This review highlights the recent trends in the development of fluorescent materials as essential tools for tracing pH variations in the biological processes of diverse living systems.
Abstract: Protons play crucial roles in many physiological and pathological processes, such as receptor-mediated signal transduction, ion transport, endocytosis, homeostasis, cell proliferation, and apoptosis. The urgent demand for pH imaging and measurement in biological systems has incited the development of fluorescent pH probes. Numerous fluorescent probes have been reported, but many lack the abilities needed for biological applications. Hence, the development of new pH probes with better biocompatibility, sensitivity, and site-specificity is still indispensable. This review highlights the recent trends in the development of fluorescent materials as essential tools for tracing pH variations in the biological processes of diverse living systems.

Journal ArticleDOI
TL;DR: Tau–iron interaction is introduced as a pleiotropic modulator of ferroptosis and ischemic stroke outcome and the protective benefit of tau knockout was revived in older mice by iron-targeting interventions.
Abstract: Functional failure of tau contributes to age-dependent, iron-mediated neurotoxicity, and as iron accumulates in ischemic stroke tissue, we hypothesized that tau failure may exaggerate ischemia-reperfusion-related toxicity. Indeed, unilateral, transient middle cerebral artery occlusion (MCAO) suppressed hemispheric tau and increased iron levels in young (3-month-old) mice and rats. Wild-type mice were protected by iron-targeted interventions: ceruloplasmin and amyloid precursor protein ectodomain, as well as ferroptosis inhibitors. At this age, tau-knockout mice did not express elevated brain iron and were protected against hemispheric reperfusion injury following MCAO, indicating that tau suppression may prevent ferroptosis. However, the accelerated age-dependent brain iron accumulation that occurs in tau-knockout mice at 12 months of age negated the protective benefit of tau suppression against MCAO-induced focal cerebral ischemia-reperfusion injury. The protective benefit of tau knockout was revived in older mice by iron-targeting interventions. These findings introduce tau-iron interaction as a pleiotropic modulator of ferroptosis and ischemic stroke outcome.

Journal ArticleDOI
02 Nov 2017-PLOS ONE
TL;DR: Investigating when barley cultivation dispersed from southwest Asia to regions of eastern Asia and how the eastern spring barley evolved in this context indicates that the eastern dispersals of wheat and barley were distinct in both space and time.
Abstract: Today, farmers in many regions of eastern Asia sow their barley grains in the spring and harvest them in the autumn of the same year (spring barley). However, when it was first domesticated in southwest Asia, barley was grown between the autumn and subsequent spring (winter barley), to complete their life cycles before the summer drought. The question of when the eastern barley shifted from the original winter habit to flexible growing schedules is of significance in terms of understanding its spread. This article investigates when barley cultivation dispersed from southwest Asia to regions of eastern Asia and how the eastern spring barley evolved in this context. We report 70 new radiocarbon measurements obtained directly from barley grains recovered from archaeological sites in eastern Eurasia. Our results indicate that the eastern dispersals of wheat and barley were distinct in both space and time. We infer that barley had been cultivated in a range of markedly contrasting environments by the second millennium BC. In this context, we consider the distribution of known haplotypes of a flowering-time gene in barley, Ppd-H1, and infer that the distributions of those haplotypes may reflect the early dispersal of barley. These patterns of dispersal resonate with the second and first millennia BC textual records documenting sowing and harvesting times for barley in central/eastern China.

Journal ArticleDOI
TL;DR: In this article, the structural and physical origin of lead-free substitutes with high piezoelectricity and temperature stability are investigated. But the structural/physical origin for their high piezo-lectric properties is still unclear, which hinders property optimization.
Abstract: Lead-based piezoelectric materials are currently facing global restrictions due to their lead toxicity. Thus it is urgent to develop lead-free substitutes with high piezoelectricity and temperature stability, among which, potassium-sodium niobate [(K,Na)NbO3, KNN] has the most potential. It is very difficult to simultaneously achieve high piezoelectric performance and reliable stability in KNN-based systems. In particular, the structural/physical origin for their high piezoelectricity is still unclear, which hinders property optimization. Here we report the achievement of high temperature stability (less than 10% variation for electric field-induced strain from 27 °C to 80 °C), good fatigue properties (stable up to 106 cycles) as well as an enhanced piezoelectric coefficient (d33) of 525 pC N−1 in (1 − x)(K1−yNay)(Nb1−zSbz)O3–xBi0.5(Na1−wKw)0.5HfO3 (KNNS–BNKH) ceramics through manipulating the rhombohedral–tetragonal (R–T) phase boundary. The structural origin of their high piezoelectric performance can be attributed to a hierarchical nanodomain architecture, where the local structure inside nanodomains comprises R and T nanotwins. The physical origin can be attributed to low domain wall energy and nearly vanishing polarization anisotropy, facilitating easy polarization rotation among different states. We believe that the new breakthrough will open a window for the practical applications of KNN-based ceramics.

Journal ArticleDOI
TL;DR: The recommendations provided herein are intended for use by healthcare providers in their management of older adults with frailty in the Asia Pacific region and it is proposed that regional guideline support committees be formed to help provide regular updates to these evidence-based guidelines.

Journal ArticleDOI
TL;DR: The topotactic conversion of cobalt phosphide nanoarray on Ti mesh into a cobalt phosphate nanoarray (Co-Pi NA) via oxidative polarization in phosphate-buffered water is presented and this catalyst shows superior long-term electrochemical stability.
Abstract: The topotactic conversion of cobalt phosphide nanoarray on Ti mesh into a cobalt phosphate nanoarray (Co-Pi NA) via oxidative polarization in phosphate-buffered water is presented. As a 3D oxygen evolution reaction (OER) catalyst electrode at neutral pH, the resulting Co-Pi NA/Ti shows exceptionally high catalytic activity and demands an overpotential of only 450 mV to drive a geometrical catalytic current density of 10 mA cm−2. Notably, this catalyst also shows superior long-term electrochemical stability. The excellent catalytic activity can be attributed to that such 3D nanoarray configuration allows for the exposure of more active sites and the easier diffusion of electrolytes and oxygen.