scispace - formally typeset
Search or ask a question
Institution

Sichuan University

EducationChengdu, China
About: Sichuan University is a education organization based out in Chengdu, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 107623 authors who have published 102844 publications receiving 1612131 citations. The organization is also known as: Sìchuān Dàxué.
Topics: Catalysis, Population, Medicine, Cancer, Chemistry


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, Ni2P NF/CC was used as a bifunctional catalyst for both the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) to achieve a geometrical catalytic current density of 100 mA cm−2.
Abstract: It is highly desirable but still remains a big challenge to develop earth-abundant bifunctional catalysts for urea oxidation and hydrogen evolution electrocatalysis towards more energy-efficient electrolytic hydrogen generation. In this study, we report that nickel phosphide nanoflake arrays on carbon cloth (Ni2P NF/CC) behave as a highly-active durable 3D catalyst electrode for the urea oxidation reaction (UOR) with the required potential of 0.447 V to achieve a geometrical catalytic current density of 100 mA cm−2 in a 1.0 M KOH with 0.5 M urea. Remarkably, the high hydrogen evolution reaction (HER) activity of Ni2P NF/CC enables it to be a bifunctional catalyst for both the UOR and HER towards energy-saving electrochemical hydrogen production, and its two-electrode alkaline electrolyzer requires a cell voltage of only 1.35 V to attain 50 mA cm−2, which is 0.58 V less compared with that required for pure water splitting to achieve the same current density, with remarkable long-term electrochemical durability and nearly 100% Faradaic efficiency for hydrogen evolution.

263 citations

Journal ArticleDOI
Hui Hua1, Minjing Li1, Ting Luo1, Yancun Yin1, Yangfu Jiang1 
TL;DR: The complex roles of MMPs and their endogenous inhibitors such as tissue inhibitors of metalloproteinase in tumorigenesis and strategies in suppressing M MPs are reviewed.
Abstract: Proteases are crucial for development, tissue remodeling, and tumorigenesis. Matrix metalloproteinases (MMPs) family, in particular, consists of more than 20 members with unique substrates and diverse function. The expression and activity of MMPs in a variety of human cancers have been intensively studied. MMPs have well-recognized roles in the late stage of tumor progression, invasion, and metastasis. However, increasing evidence demonstrates that MMPs are involved earlier in tumorigenesis, e.g., in malignant transformation, angiogenesis, and tumor growth both at the primary and metastatic sites. Recent studies also suggest that MMPs play complex roles in tumor progression. While most MMPs promote tumor progression, some of them may protect the host against tumorigenesis in a context-dependent manner. MMPs have been chosen as promising targets for cancer therapy on the basis of their aberrant up-regulation in malignant tumors and their ability to promote cancer metastasis. Although preclinical studies testing the efficacy of MMP suppression in tumor models were so encouraging, the results of clinical trials in cancer patients have been rather disappointing. Here, we review the complex roles of MMPs and their endogenous inhibitors such as tissue inhibitors of metalloproteinase in tumorigenesis and strategies in suppressing MMPs.

263 citations

Journal ArticleDOI
TL;DR: A number of consensus groups have provided similar definitions where sarcopenia is now defined as loss of function coupled with loss of muscle mass, and all of the definitions have been demonstrated to predict functional decline, hospitalization, and mortality in both community-dwelling older persons and residents in nursing homes.

263 citations

Journal ArticleDOI
TL;DR: In this paper, the Co-CuO nanoarray on copper foam requires a current densities of 50 and 100 mA cm−2 at overpotentials of only 299 and 330 mV, respectively.
Abstract: It is highly desired to enhance the catalytic activity of oxygen evolution reaction (OER) electrocatalysts made of earth-abundant elements In this Letter, we report that the OER activity of a CuO nanoarray can be largely enhanced by Co doping In 10 M KOH, the Co-CuO nanoarray on copper foam requires a current densities of 50 and 100 mA cm–2 at overpotentials of only 299 and 330 mV, respectively It also shows superior long-term durability over 15 h with a turnover frequency of 0056 mol O2 s–1 at an overpotential of 300 mV

262 citations

Journal ArticleDOI
Wen-Wen Yue1, Huijuan Li1, Tao Xiang1, Hui Qin1, Shudong Sun1, Changsheng Zhao1 
TL;DR: Zwitterionic polymer of poly(sulfobetaine methacrylate) (PSBMA) was grafted from polysulfone (PSf) membrane via surface-initiated atom transfer radical polymerization (SI-ATRP) as discussed by the authors.

262 citations


Authors

Showing all 108474 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Robin M. Murray1711539116362
Xiang Zhang1541733117576
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Yi Yang143245692268
Xinliang Feng13472173033
Chuan He13058466438
Lei Zhang130231286950
Jian Zhou128300791402
Shaobin Wang12687252463
Yi Xie12674562970
Pak C. Sham124866100601
Wei Chen122194689460
Bo Wang119290584863
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023339
20221,713
202113,849
202011,702
20199,714
20187,906