scispace - formally typeset
Search or ask a question
Institution

Sichuan University

EducationChengdu, China
About: Sichuan University is a education organization based out in Chengdu, China. It is known for research contribution in the topics: Population & Catalysis. The organization has 107623 authors who have published 102844 publications receiving 1612131 citations. The organization is also known as: Sìchuān Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: Understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis pathways and apoptosis‐related microRNA regulation, in cancer may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment.
Abstract: Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro-survival or pro-death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti-cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis-related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment.

1,197 citations

Journal ArticleDOI
TL;DR: This work combines the autoencoder, deconvolution network, and shortcut connections into the residual encoder–decoder convolutional neural network (RED-CNN) for low-dose CT imaging and achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases.
Abstract: Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data, whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder–decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods in both simulated and clinical cases. Especially, our method has been favorably evaluated in terms of noise suppression, structural preservation, and lesion detection.

1,161 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
Ruiqiang Li, Wei Fan, Geng Tian1, Hongmei Zhu, Lin He2, Lin He3, Jing Cai1, Jing Cai4, Quanfei Huang, Qingle Cai5, Bo Li, Yinqi Bai, Zhihe Zhang6, Ya-Ping Zhang4, Wen Wang4, Jun Li, Fuwen Wei1, Heng Li7, Min Jian, Jianwen Li, Zhaolei Zhang8, Rasmus Nielsen9, Dawei Li, Wanjun Gu10, Zhentao Yang, Zhaoling Xuan, Oliver A. Ryder, Frederick C. Leung11, Yan Zhou, Jianjun Cao, Xiao Sun10, Yonggui Fu12, Xiaodong Fang, Xiaosen Guo, Bo Wang, Rong Hou6, Fujun Shen6, Bo Mu, Peixiang Ni, Runmao Lin, Wubin Qian, Guo-Dong Wang4, Guo-Dong Wang1, Chang Yu, Wenhui Nie4, Jinhuan Wang4, Zhigang Wu, Huiqing Liang, Jiumeng Min5, Qi Wu1, Shifeng Cheng5, Jue Ruan1, Mingwei Wang, Zhongbin Shi, Ming Wen, Binghang Liu, Xiaoli Ren, Huisong Zheng, Dong Dong8, Kathleen Cook8, Gao Shan, Hao Zhang, Carolin Kosiol13, Xueying Xie10, Zuhong Lu10, Hancheng Zheng, Yingrui Li1, Cynthia C. Steiner, Tommy Tsan-Yuk Lam11, Siyuan Lin, Qinghui Zhang, Guoqing Li, Jing Tian, Timing Gong, Hongde Liu10, Dejin Zhang10, Lin Fang, Chen Ye, Juanbin Zhang, Wenbo Hu12, Anlong Xu12, Yuanyuan Ren, Guojie Zhang4, Guojie Zhang1, Michael William Bruford14, Qibin Li1, Lijia Ma1, Yiran Guo1, Na An, Yujie Hu1, Yang Zheng1, Yongyong Shi2, Zhiqiang Li2, Qing Liu, Yanling Chen, Jing Zhao, Ning Qu5, Shancen Zhao, Feng Tian, Xiaoling Wang, Haiyin Wang, Lizhi Xu, Xiao Liu, Tomas Vinar15, Yajun Wang16, Tak-Wah Lam11, Siu-Ming Yiu11, Shiping Liu17, Hemin Zhang, Desheng Li, Yan Huang, Xia Wang, Guohua Yang, Zhi Jiang, Junyi Wang, Nan Qin, Li Li, Jingxiang Li, Lars Bolund, Karsten Kristiansen18, Gane Ka-Shu Wong19, Maynard V. Olson20, Xiuqing Zhang, Songgang Li, Huanming Yang, Jing Wang, Jun Wang18 
21 Jan 2010-Nature
TL;DR: Using next-generation sequencing technology alone, a draft sequence of the giant panda genome is generated and assembled, indicating that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition.
Abstract: Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.

1,109 citations


Authors

Showing all 108474 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Robin M. Murray1711539116362
Xiang Zhang1541733117576
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Yi Yang143245692268
Xinliang Feng13472173033
Chuan He13058466438
Lei Zhang130231286950
Jian Zhou128300791402
Shaobin Wang12687252463
Yi Xie12674562970
Pak C. Sham124866100601
Wei Chen122194689460
Bo Wang119290584863
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023339
20221,712
202113,846
202011,702
20199,714
20187,906