scispace - formally typeset
Search or ask a question
Institution

Sichuan University

EducationChengdu, China
About: Sichuan University is a education organization based out in Chengdu, China. It is known for research contribution in the topics: Population & Catalysis. The organization has 107623 authors who have published 102844 publications receiving 1612131 citations. The organization is also known as: Sìchuān Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: This review aims at summarizing the recent progress in nanoporous carbons, as the most commonly used EDLC electrode materials in the field of capacitive energy storage, from the viewpoint of materials science and characterization techniques.
Abstract: The urgent need for efficient energy storage devices has stimulated a great deal of research on electrochemical double layer capacitors (EDLCs). This review aims at summarizing the recent progress in nanoporous carbons, as the most commonly used EDLC electrode materials in the field of capacitive energy storage, from the viewpoint of materials science and characterization techniques. We discuss the key advances in the fundamental understanding of the charge storage mechanism in nanoporous carbon-based electrodes, including the double layer formation in confined nanopores. Special attention will be also paid to the important development of advanced in situ analytical techniques as well as theoretical studies to better understand the carbon pore structure, electrolyte ion environment and ion fluxes in these confined pores. We also highlight the recent progress in advanced electrolytes for EDLCs. The better understanding of the charge storage mechanism of nanoporous carbon-based electrodes and the rational design of electrolytes should shed light on developing the next-generation of EDLCs.

308 citations

Journal ArticleDOI
TL;DR: The findings suggest that JAK-STAT pathway inhibition may represent a therapeutic strategy in NK/T-cell lymphomas and their cell lines through next generation and/or Sanger sequencing.
Abstract: Lymphomas arising from NK or gd-T cells are very aggressive diseases and little is known regarding their pathogenesis. Here we report frequent activating mutations of STAT3 and STAT5B in NK/T-cell lymphomas (n ¼ 51), gd-T-cell lymphomas (n ¼ 43) and their cell lines (n ¼ 9) through next generation and/or Sanger sequencing. STAT5B N642H is particularly frequent in all forms of gd-T-cell lymphomas. STAT3 and STAT5B mutations are associated with increased phosphorylated protein and a growth advantage to transduced cell lines or normal NK cells. Growth-promoting activity of the mutants can be partially inhibited by a JAK1/2 inhibitor. Molecular modelling and surface plasmon resonance measurements of the N642H mutant indicate a marked increase in binding affinity of the phosphotyrosine-Y699 with the mutant histidine. This is associated with the prolonged persistence of the mutant phosphoSTAT5B and marked increase of binding to target sites. Our findings suggest that JAK-STAT pathway inhibition may represent a therapeutic strategy.

308 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors summarized their representative work according to the following categories: C-H functionalization, synthesis of aromatic aza-heterocycles, asymmetric organic photochemical synthesis, transformations of small molecules and biomolecule-compatible reactions.
Abstract: In recent years, visible light-driven organic photochemical synthesis has attracted wide research interest from academic and industrial communities due to its features of green and sustainable chemistry. In this flourishing area, Chinese chemists have devoted great efforts to different aspects of synthetic chemistry. This review will summarize their representative work according to the following categories: C–H functionalization, synthesis of aromatic aza-heterocycles, asymmetric organic photochemical synthesis, transformations of small molecules and biomolecule-compatible reactions.

308 citations

Journal ArticleDOI
30 Apr 2020-Heart
TL;DR: COVID-19 contributes to cardiovascular complications, including acute myocardial injury as a result of acute coronary syndrome, myocarditis, stress-cardiomyopathy, arrhythmias, cardiogenic shock, and cardiac arrest.
Abstract: Since its recognition in December 2019, covid-19 has rapidly spread globally causing a pandemic. Pre-existing comorbidities such as hypertension, diabetes, and cardiovascular disease are associated with a greater severity and higher fatality rate of covid-19. Furthermore, COVID-19 contributes to cardiovascular complications, including acute myocardial injury as a result of acute coronary syndrome, myocarditis, stress-cardiomyopathy, arrhythmias, cardiogenic shock, and cardiac arrest. The cardiovascular interactions of COVID-19 have similarities to that of severe acute respiratory syndrome, Middle East respiratory syndrome and influenza. Specific cardiovascular considerations are also necessary in supportive treatment with anticoagulation, the continued use of renin-angiotensin-aldosterone system inhibitors, arrhythmia monitoring, immunosuppression or modulation, and mechanical circulatory support.

307 citations

Journal ArticleDOI
18 May 2017-ACS Nano
TL;DR: It is demonstrated that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency and can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.
Abstract: The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor–liquid interface due to capillary effect This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation Th

307 citations


Authors

Showing all 108474 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Robin M. Murray1711539116362
Xiang Zhang1541733117576
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Yi Yang143245692268
Xinliang Feng13472173033
Chuan He13058466438
Lei Zhang130231286950
Jian Zhou128300791402
Shaobin Wang12687252463
Yi Xie12674562970
Pak C. Sham124866100601
Wei Chen122194689460
Bo Wang119290584863
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023339
20221,712
202113,846
202011,702
20199,714
20187,906