scispace - formally typeset
Search or ask a question
Institution

Silver Spring Networks

About: Silver Spring Networks is a based out in . It is known for research contribution in the topics: Population & Poison control. The organization has 7021 authors who have published 8244 publications receiving 272468 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: GMT allows users to manipulate (x,y,z) data, and generate PostScript illustrations, including simple x-y diagrams, contour maps, color images, and artificially illuminated, perspective, and/or shaded-relief plots using a variety of map projections.
Abstract: Version 31 of the Generic Mapping Tools (GMT) has been released More than 6000 scientists worldwide are currently using this free, public domain collection of UNIX tools that contains programs serving a variety of research functions GMT allows users to manipulate (x,y) and (x,y,z) data, and generate PostScript illustrations, including simple x-y diagrams, contour maps, color images, and artificially illuminated, perspective, and/or shaded-relief plots using a variety of map projections (see Wessel and Smith [1991] and Wessel and Smith [1995], for details) GMT has been installed under UNIX on most types of workstations and both IBM-compatible and Macintosh personal computers

6,819 citations

Journal ArticleDOI
TL;DR: This research framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms and envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD.
Abstract: In 2011, the National Institute on Aging and Alzheimer's Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer's disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer's Association to update and unify the 2011 guidelines. This unifying update is labeled a "research framework" because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer's Association Research Framework, Alzheimer's disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.

5,126 citations

Journal ArticleDOI
TL;DR: In this paper, an array-based high-throughput technique that facilitates gene expression and copy number surveys of very large numbers of tumors is presented. But, it is limited to a single tumor tissue microarray.
Abstract: Many genes and signalling pathways controlling cell proliferation, death and differentiation, as well as genomic integrity, are involved in cancer development. New techniques, such as serial analysis of gene expression and cDNA microarrays, have enabled measurement of the expression of thousands of genes in a single experiment, revealing many new, potentially important cancer genes. These genome screening tools can comprehensively survey one tumor at a time; however, analysis of hundreds of specimens from patients in different stages of disease is needed to establish the diagnostic, prognostic and therapeutic importance of each of the emerging cancer gene candidates. Here we have developed an array-based high-throughput technique that facilitates gene expression and copy number surveys of very large numbers of tumors. As many as 1000 cylindrical tissue biopsies from individual tumors can be distributed in a single tumor tissue microarray. Sections of the microarray provide targets for parallel in situ detection of DNA, RNA and protein targets in each specimen on the array, and consecutive sections allow the rapid analysis of hundreds of molecular markers in the same set of specimens. Our detection of six gene amplifications as well as p53 and estrogen receptor expression in breast cancer demonstrates the power of this technique for defining new subgroups of tumors.

4,164 citations

Journal ArticleDOI
TL;DR: In this paper, two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI), which have a spatial grid resolution of 0.25° and a temporal resolution of 1 day.
Abstract: Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25° and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth Observing System satellite SST data. Both products also use in situ data from ships and buoys and include a large-scale adjustment of satellite biases with respect to the in situ data. Because of AMSR’s near-all-weather coverage, there is an increase in OI signal variance when AMSR is added to AVHRR. Thus, two products are needed to avoid an analysis variance jump when AMSR became available in June 2002. For both products, the results show improved spatial and temporal resolution compared to previous weekly 1° OI analyses. The AVHRR-only product uses Pathfinder AVHRR data (currently available from January 1985 to December 2005) and operational AVHRR data for 2006 onward. Pathfinder AVHRR was chosen over operational AVHRR, when available, because Pathfinder agrees better with the in situ data. The AMSR– AVHRR product begins with the start of AMSR data in June 2002. In this product, the primary AVHRR contribution is in regions near land where AMSR is not available. However, in cloud-free regions, use of both infrared and microwave instruments can reduce systematic biases because their error characteristics are independent.

3,422 citations

Journal ArticleDOI
TL;DR: Common cancer treatments, survival rates, and posttreatment concerns are summarized and the new National Cancer Survivorship Resource Center is introduced, which has engaged more than 100 volunteer survivorship experts nationwide to develop tools for cancer survivors, caregivers, health care professionals, advocates, and policy makers.
Abstract: Although there has been considerable progress in reducing cancer incidence in the United States, the number of cancer survivors continues to increase due to the aging and growth of the population and improvements in survival rates. As a result, it is increasingly important to understand the unique medical and psychosocial needs of survivors and be aware of resources that can assist patients, caregivers, and health care providers in navigating the various phases of cancer survivorship. To highlight the challenges and opportunities to serve these survivors, the American Cancer Society and the National Cancer Institute estimated the prevalence of cancer survivors on January 1, 2012 and January 1, 2022, by cancer site. Data from Surveillance, Epidemiology, and End Results (SEER) registries were used to describe median age and stage at diagnosis and survival; data from the National Cancer Data Base and the SEER-Medicare Database were used to describe patterns of cancer treatment. An estimated 13.7 million Americans with a history of cancer were alive on January 1, 2012, and by January 1, 2022, that number will increase to nearly 18 million. The 3 most prevalent cancers among males are prostate (43%), colorectal (9%), and melanoma of the skin (7%), and those among females are breast (41%), uterine corpus (8%), and colorectal (8%). This article summarizes common cancer treatments, survival rates, and posttreatment concerns and introduces the new National Cancer Survivorship Resource Center, which has engaged more than 100 volunteer survivorship experts nationwide to develop tools for cancer survivors, caregivers, health care professionals, advocates, and policy makers.

3,203 citations


Authors

Showing all 7021 results

NameH-indexPapersCitations
David Vlahov12478064452
William C. Roberts122111755285
Werner Seeger114111357464
John P. Cooke10955942653
Lewis J. Rubin10137057044
James A. Yorke10144544101
Philip K. Hopke9192940612
William Lawson9145729700
Edward Taub8521532923
Nelson L. Michael8442626700
Stuart Sherman8365825070
Allen P. Burke8133938011
George C. Tsokos8164929669
Stuart Rich7921331922
Arthur N. Popper7834019956
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

88% related

Johns Hopkins University
249.2K papers, 14M citations

86% related

University of Minnesota
257.9K papers, 11.9M citations

85% related

University of California, San Diego
204.5K papers, 12.3M citations

85% related

Duke University
200.3K papers, 10.7M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2021368
2020365
2019344
2018323
2017367
2016333