scispace - formally typeset
Search or ask a question
Institution

Simón Bolívar University

EducationCaracas, Venezuela
About: Simón Bolívar University is a education organization based out in Caracas, Venezuela. It is known for research contribution in the topics: Population & Crystallization. The organization has 5912 authors who have published 8294 publications receiving 126152 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Improved WUE under salinity explains the eco-physiological success of mangrove species under increasing salinity and decline in NUE may pose a problem for L. racemosa under hyper-saline environments regardless of N availability.
Abstract: Under constant salinity we analysed the leaf characteristics of Laguncularia racemosa (L.) Gaertn. in combination with gas exchange and carbon isotopic composition to estimate leaf water-use efficiency (WUE) and potential nitrogen-use efficiency (NUE). NaCl was not added to the control plants and the others were maintained at salinities of 15 and 30 ‰ (S0, S15, and S30, respectively). Leaf succulence, sodium (Na), nitrogen (N), and chlorophyll (Chl) contents increased under salinity. Salinity had a negative impact on net photosynthetic rate (PN) and stomatal conductance (gs) at high and moderated irradiances. Potential NUE declined significantly (p<0.05) with salinity by 37 and 58 % at S15 and S30, respectively, compared to S0 plants. Conversely, compared to S0 plants, PN/gs increased under saline conditions by 12 % (S15) and 50 % (S30). Thus, WUE inferred from PN/gs was consistent with salinity improved short-term WUE. Long-term leaf WUE was also enhanced by salinity as suggested by significantly increased leaf δ13C with salinity. Improved WUE under salinity explains the eco-physiological success of mangrove species under increasing salinity. Conversely, decline in NUE may pose a problem for L. racemosa under hyper-saline environments regardless of N availability.

77 citations

Journal ArticleDOI
TL;DR: Xylem anatomy and leaf tissue of L. racemosa appeared to be modulated by salinity, which led to a coordinated decline in hydraulic properties as salinity increased, and these structural changes would reflect functional water use characteristics of leaves under salinity.
Abstract: The purpose of this study was to investigate the xylem anatomy and hydraulic characteristics of the mangrove Laguncularia racemosa grown under contrasting salinities. The study addressed the hypothesis that, at high salinity, water transport capacity may decrease in association with higher water use efficiency. Plants were grown in media to which 0, 15 and 30 NaCl was added. Vessel density and diameter were determined in transverse sections of stem and midrib leaves in terminal shoots, and hydraulic parameters were measured. In stems, the vessel density increased with salinity, while the anatomical diameter (d(a)) and hydraulic diameter (d(h)) declined; in leaves, these parameters remained unchanged with salinity. Huber value and hydraulic and specific conductivities decreased with salinity. Leaf blade resistance increased with salinity and represented the largest fraction of twig resistance. Xylem anatomy and leaf tissue of L. racemosa appeared to be modulated by salinity, which led to a coordinated decline in hydraulic properties as salinity increased. Therefore, these structural changes would reflect functional water use characteristics of leaves under salinity.

77 citations

Journal ArticleDOI
TL;DR: The first exact interior solution to Einstein's field equations for a static and nonuniform braneworld star with local and non-local bulk terms is presented in this paper, where it is shown that the Weyl scalar is always negative inside the stellar distribution, and in consequence it reduces both the effective density and the effective pressure.
Abstract: In this paper the first exact interior solution to Einstein's field equations for a static and nonuniform braneworld star with local and nonlocal bulk terms is presented. It is shown that the bulk Weyl scalar ${\cal U}(r)$ is always negative inside the stellar distribution, and in consequence it reduces both the effective density and the effective pressure. It is found that the anisotropy generated by bulk gravity effect has an acceptable physical behavior inside the distribution. Using a Reissner–Nordstrom-like exterior solution, the effects of bulk gravity on pressure and density are found through matching conditions.

77 citations

Journal ArticleDOI
TL;DR: An experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community, identifies the likely candidate causal agent or agents of white band disease (WBD).
Abstract: Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in all WBD samples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent of WBD via tests of Henle–Koch's postulates, it will be vital to experimentally control for populations of the other potential pathogens identified in this study.

77 citations

Journal ArticleDOI
TL;DR: In this paper, the physical and chemical modification of cassava starch was carried out to prepare compounds that were evaluated as corrosion inhibitors of carbon steel under alkaline conditions in 200mg −1 NaCl solutions.

77 citations


Authors

Showing all 5925 results

NameH-indexPapersCitations
Franco Nori114111763808
Ignacio Rodriguez-Iturbe9633432283
Ian W. Hamley7846925800
Francisco Zaera7343219907
Thomas G. Habetler7339520725
Douglas L. Jones7051221596
I. Taboada6634613528
Enrique Herrero6424211653
Rudi Studer6026819876
Alejandro J. Müller5842012410
David Padua5824311155
Rudolf Jaffé5818210268
Luis Balicas5732814114
Volker Abetz5538611583
Ananias A. Escalante511608866
Network Information
Related Institutions (5)
University of the Basque Country
49.6K papers, 1M citations

87% related

Complutense University of Madrid
90.2K papers, 2.1M citations

86% related

National Autonomous University of Mexico
127.7K papers, 2.2M citations

86% related

University of Granada
59.2K papers, 1.4M citations

86% related

Autonomous University of Madrid
52.8K papers, 1.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
202220
2021286
2020384
2019340
2018312