scispace - formally typeset
Search or ask a question
Institution

Sofia University

EducationSofia, Bulgaria
About: Sofia University is a education organization based out in Sofia, Bulgaria. It is known for research contribution in the topics: Large Hadron Collider & Standard Model. The organization has 8533 authors who have published 15730 publications receiving 306320 citations. The organization is also known as: University of Sofia & BFUS.


Papers
More filters
Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam2  +2802 moreInstitutions (215)
04 Jun 2015-Nature
TL;DR: In this paper, the branching fractions of the B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) were observed.
Abstract: The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strange B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays are very rare, with about four of the former occurring for every billion B-s(0) mesons produced, and one of the latter occurring for every ten billion B-0 mesons(1). A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb(Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton-proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B-s(0)->mu(+)mu(-) decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B-0 ->mu(+)mu(-) decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B-s(0) and B-0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.

467 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the transverse momentum and pseudorapidity distributions in proton-proton collisions at root s = 7 TeV with the inner tracking system of the CMS detector at the LHC.
Abstract: Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at root s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/d eta vertical bar(vertical bar eta vertical bar<0.5) = 5.78 +/- 0.01(stat) +/- 0.23(stat) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from root s = 0.9 to 7 TeV is [66.1 +/- 1.0(stat) +/- 4.2(syst)]%. The mean transverse momentum is measured to be 0.545 +/- 0.005(stat) +/- 0.015(syst) GeV/c. The results are compared with similar measurements at lower energies.

464 citations

Journal ArticleDOI
TL;DR: It is shown that in the mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous scalarization of the Schwarzschild black holes in the extreme curvature regime.
Abstract: In the present Letter, we consider a class of extended scalar-tensor-Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is excited only in the extreme curvature regime. We show that in the mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous scalarization of the Schwarzschild black holes in the extreme curvature regime. In this regime, below certain mass, the Schwarzschild solution becomes unstable and a new branch of solutions with a nontrivial scalar field bifurcates from the Schwarzschild one. As a matter of fact, more than one branch with a nontrivial scalar field can bifurcate at different masses, but only the first one is supposed to be stable. This effect is quite similar to the spontaneous scalarization of neutron stars. In contrast to the standard spontaneous scalarization of neutron stars, which is induced by the presence of matter, in our case, the scalarization is induced by the curvature of the spacetime.

455 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed ULySS, a package to fit spectroscopic observations against a linear combination of non-linear model components convolved with a parametric line-of-sight velocity distribution.
Abstract: Aims. We provide an easy-to-use full-spectrum fitting package and explore its applications to (i) the determination of the stellar atmospheric parameters and (ii) the study of the history of stellar populations. Methods. We developed ULySS, a package to fit spectroscopic observations against a linear combination of non-linear model components convolved with a parametric line-of-sight velocity distribution. The minimization can be either local or global, and determines all the parameters in a single fit. We use χ 2 maps, convergence maps and Monte-Carlo simulations to study the degeneracies, local minima and to estimate the errors. Results. We show the importance of determining the shape of the continuum simultaneously to the other parameters by including a multiplicative polynomial in the model (without prior pseudo-continuum determination, or rectification of the spectrum). We also stress the usefulness of using an accurate line-spread function, depending on the wavelength, so that the line-shape of the models properly matches the observation. For simple models, i.e., to measure the atmospheric parameters or the age/metallicity of a singleage stellar population, there is often a unique minimum, or when local minima exist they can be recognized unambiguously. For more complex models, Monte-Carlo simulations are required to assess the validity of the solution. Conclusions. The ULySS package is public, simple to use and flexible. The full spectrum fitting makes optimal use of the signal.

454 citations

Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2238 moreInstitutions (159)
TL;DR: In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented.
Abstract: Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The b jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).

454 citations


Authors

Showing all 8600 results

NameH-indexPapersCitations
Michael Tytgat134144994133
Leander Litov133142492713
Eric Conte132120684593
Georgi Sultanov132149393318
Plamen Iaydjiev131128587958
Anton Dimitrov130123686919
Jordan Damgov129119585490
Borislav Pavlov129124586458
Jean-Laurent Agram128122184423
Cristina Botta128116079070
Jean-Charles Fontaine128119084011
Peicho Petkov128111183495
Muhammad Ahmad128118779758
Roumyana Hadjiiska126100373091
Mircho Rodozov12497270519
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

University of Paris-Sud
52.7K papers, 2.1M citations

88% related

University of Hamburg
89.2K papers, 2.8M citations

88% related

Polish Academy of Sciences
102.1K papers, 2M citations

88% related

Complutense University of Madrid
90.2K papers, 2.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202326
2022141
2021792
2020771
2019769
2018693