scispace - formally typeset
Search or ask a question
Institution

Sofia University

EducationSofia, Bulgaria
About: Sofia University is a education organization based out in Sofia, Bulgaria. It is known for research contribution in the topics: Large Hadron Collider & Standard Model. The organization has 8533 authors who have published 15730 publications receiving 306320 citations. The organization is also known as: University of Sofia & BFUS.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the temperature-dependent Raman spectra of orthorhombic compounds were studied in the $5-300\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ temperature range.
Abstract: The temperature-dependent Raman spectra of orthorhombic $R\mathrm{Mn}{\mathrm{O}}_{3}$ $(R=\mathrm{Pr},\mathrm{Nd},\mathrm{Sm},\mathrm{Eu},\mathrm{Gd},\mathrm{Tb},\mathrm{Dy},\mathrm{Ho},\mathrm{Y})$ were studied in the $5--300\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ temperature range. It was established that while the materials with large ${R}^{3+}$ ionic radius ${r}_{R}$ and $A$-type antiferromagnetic order $(R=\mathrm{Pr},\mathrm{Nd},\mathrm{Sm})$ exhibit significant phonon softening and other anomalies with decreasing temperature near and below ${T}_{N}$, the effect of magnetic ordering is much weaker or negligible in compounds with $R=\mathrm{Eu}$, Gd, Tb, Dy, Ho, and Y, characterized by small ${r}_{R}$ and incommensurate magnetic structure. The results are discussed accounting for the variations with ${r}_{R}$ of the type of magnetic ordering and related spin-phonon interaction.

181 citations

Journal ArticleDOI
TL;DR: In this article, the multiplicity distribution of primary charged hadron multiplicity distributions for non-single-diffractive events in proton-proton collisions at center-of-mass energies of 0.9, 2.36, and 7 TeV, in five pseudorapidity ranges from |eta|<0.5 to |eta |<2.4.
Abstract: Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36, and 7 TeV, in five pseudorapidity ranges from |eta|<0.5 to |eta|<2.4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at sqrt(s) = 0.9 TeV is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with sqrt(s) is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies.

181 citations

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2319 moreInstitutions (149)
TL;DR: In this paper, a 19.7 inverse femtobarn sample of proton-proton collisions at 8 TeV was collected with the CMS detector at the CERN LHC.

181 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an analog of electromagnetically induced transparency occurring when light is absorbed by a two-dimensional lattice of metallic spheres mounted on an asymmetric dielectric waveguide.
Abstract: We present a classical analog of electromagnetically induced transparency occurring when light is absorbed by a two-dimensional lattice of metallic spheres mounted on an asymmetric dielectric waveguide. The transparency is manifested as a spectral hole within the surface-plasmon absorption peak of the metallic spheres and is a result of destructive interference of the waveguide modes with incident radiation. The presence of transparency windows is accompanied by slow light effect wherein the group velocity is reduced by a factor of 6000. At the same time, the minimum length for storing a bit of information is of the order of 100 nm. The proposed setup is a much easier means to achieve transparency and slow light compared to existing atomic, solid-state, and photonic systems and allows for the realization of ultracompact optical delay lines and buffers.

180 citations

Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2319 moreInstitutions (159)
TL;DR: In this article, the performance of missing transverse momentum (Tmiss) reconstruction algorithms for the CMS experiment is presented, using proton-proton collisions at a center of mass energy of 13 TeV, collected at the CERN LHC in 2016.
Abstract: The performance of missing transverse momentum (Tmiss) reconstruction algorithms for the CMS experiment is presented, using proton-proton collisions at a center-of-mass energy of 13 TeV, collected at the CERN LHC in 2016. The data sample corresponds to an integrated luminosity of 35.9 fb-1. The results include measurements of the scale and resolution of Tmiss, and detailed studies of events identified with anomalous Tmiss. The performance is presented of a Tmiss reconstruction algorithm that mitigates the effects of multiple proton-proton interactions, using the "pileup per particle identification" method. The performance is shown of an algorithm used to estimate the compatibility of the reconstructed Tmiss with the hypothesis that it originates from resolution effects.

180 citations


Authors

Showing all 8600 results

NameH-indexPapersCitations
Michael Tytgat134144994133
Leander Litov133142492713
Eric Conte132120684593
Georgi Sultanov132149393318
Plamen Iaydjiev131128587958
Anton Dimitrov130123686919
Jordan Damgov129119585490
Borislav Pavlov129124586458
Jean-Laurent Agram128122184423
Cristina Botta128116079070
Jean-Charles Fontaine128119084011
Peicho Petkov128111183495
Muhammad Ahmad128118779758
Roumyana Hadjiiska126100373091
Mircho Rodozov12497270519
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

University of Paris-Sud
52.7K papers, 2.1M citations

88% related

University of Hamburg
89.2K papers, 2.8M citations

88% related

Polish Academy of Sciences
102.1K papers, 2M citations

88% related

Complutense University of Madrid
90.2K papers, 2.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202326
2022141
2021792
2020771
2019769
2018693