scispace - formally typeset
Search or ask a question
Institution

Soitec

CompanyBernin, France
About: Soitec is a company organization based out in Bernin, France. It is known for research contribution in the topics: Layer (electronics) & Silicon on insulator. The organization has 589 authors who have published 1062 publications receiving 13737 citations. The organization is also known as: Soitec (France).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss methods of forming silicon-on-insulator (SOI) wafers, their physical properties, and the latest improvements in controlling the structure parameters.
Abstract: Silicon-on-insulator (SOI) wafers are precisely engineered multilayer semiconductor/dielectric structures that provide new functionality for advanced Si devices. After more than three decades of materials research and device studies, SOI wafers have entered into the mainstream of semiconductor electronics. SOI technology offers significant advantages in design, fabrication, and performance of many semiconductor circuits. It also improves prospects for extending Si devices into the nanometer region (<10 nm channel length). In this article, we discuss methods of forming SOI wafers, their physical properties, and the latest improvements in controlling the structure parameters. We also describe devices that take advantage of SOI, and consider their electrical characteristics.

772 citations

Journal ArticleDOI
TL;DR: In this paper, a GaAs-based top tandem solar cell structure was bonded to an InP-based bottom tandem cell with a difference in lattice constant of 3.7%.
Abstract: Triple-junction solar cells from III–V compound semiconductors have thus far delivered the highest solar-electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four-junction solar cell architectures with optimum bandgap combination are found for lattice-mismatched III–V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs-based top tandem solar cell structure was bonded to an InP-based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four-junction solar cell with a new record efficiency of 44.7% at 297-times concentration of the AM1.5d (ASTM G173-03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III–V multi-junction solar cells having four and in the future even more junctions. Copyright © 2014 John Wiley & Sons, Ltd.

562 citations

Journal ArticleDOI
TL;DR: The Smart-Cut process as discussed by the authors involves two technologies: wafer bonding and ion implantation associated with a temperature treatment which induces a in-depth splitting of the implanted wafer.
Abstract: An alternative route to existing silicon on insulator (SOI) material technologies such as SIMOX (separation by implanted oxygen) and BESOI (bonded and etch-back SOI) is the new Smart-Cut process, which appears to be a good candidate to achieve ULSI criteria. The Smart-Cut process involves two technologies: wafer bonding and ion implantation associated with a temperature treatment which induces a in-depth splitting of the implanted wafer. The details of the Smart-Cut process, the physical phenomena involved in the different technological steps such as hydrogen implantation related mechanisms and wafer bonding are discussed. The characteristics of the final structure in terms of thickness homogeneity, crystalline defects, surface microroughness, and electrical characterization are presented. Other applications of this process are also highlighted.

287 citations

Journal ArticleDOI
TL;DR: A versatile method to control strain by fabricating membranes in which the final strain state is controlled by elastic strain sharing, that is, without the formation of defects, is demonstrated.
Abstract: Strain plays a critical role in the properties of materials. In silicon and silicon-germanium, strain provides a mechanism for control of both carrier mobility and band offsets. In materials integration, strain is typically tuned through the use of dislocations and elemental composition. We demonstrate a versatile method to control strain by fabricating membranes in which the final strain state is controlled by elastic strain sharing, that is, without the formation of defects. We grow Si/SiGe layers on a substrate from which they can be released, forming nanomembranes. X-ray-diffraction measurements confirm a final strain predicted by elasticity theory. The effectiveness of elastic strain to alter electronic properties is demonstrated by low-temperature longitudinal Hall-effect measurements on a strained-silicon quantum well before and after release. Elastic strain sharing and film transfer offer an intriguing path towards complex, multiple-layer structures in which each layer's properties are controlled elastically, without the introduction of undesirable defects.

264 citations

Journal ArticleDOI
TL;DR: In this article, three cell architectures are presented using the same two top junctions of GaInP/GaAs but different infrared absorbers based on Germanium, GaSb, or GaInAs on InP.
Abstract: The highest solar cell conversion efficiencies are achieved with four-junction devices under concentrated sunlight illumination. Different cell architectures are under development, all targeting an ideal bandgap combination close to 1.9, 1.4, 1.0, and 0.7 eV. Wafer bonding is used in this work to combine materials with a significant lattice mismatch. Three cell architectures are presented using the same two top junctions of GaInP/GaAs but different infrared absorbers based on Germanium, GaSb, or GaInAs on InP. The modeled efficiency potential at 500 suns is in the range of 49–54% for all three devices, but the highest efficiency is expected for the InP-based cell. An efficiency of 46% at 508 suns was already measured by AIST in Japan for a GaInP/GaAs//GaInAsP/GaInAs solar cell and represents the highest independently confirmed efficiency today. Solar cells on Ge and GaSb are in the development phase at Fraunhofer ISE, and the first demonstration of functional devices is presented in this paper.

252 citations


Authors

Showing all 590 results

NameH-indexPapersCitations
Michael R. Krames6532118448
Bich-Yen Nguyen472736557
Iuliana Radu372375026
George K. Celler362335964
Andreas Gombert311763597
Fabrice Letertre291802707
Bruno Ghyselen281752943
Kiyoshi Mitani261221966
Bernard Aspar25991910
Mariam Sadaka25981780
Stefan Degroote24932335
Konstantin Bourdelle241322236
Joff Derluyn23751877
Carlos Mazure201511552
Philippe Flatresse20731175
Network Information
Related Institutions (5)
Texas Instruments
39.2K papers, 751.8K citations

83% related

Fujitsu
75K papers, 827.5K citations

83% related

NEC
57.6K papers, 835.9K citations

82% related

Intel
68.8K papers, 1.6M citations

82% related

Sony Broadcast & Professional Research Laboratories
63.8K papers, 865.6K citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20221
202123
202029
201933
201833