scispace - formally typeset
Search or ask a question
Institution

Solid State Physics Laboratory

FacilityDelhi, India
About: Solid State Physics Laboratory is a facility organization based out in Delhi, India. It is known for research contribution in the topics: Quantum dot & Dielectric. The organization has 1754 authors who have published 2597 publications receiving 50601 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, various growth rates and growth temperatures were tried to get device quality epitaxial layers suitable for solar cell applications, and it was observed that the growth temperatures and the growth rates affect the surface morphology, optical and interface properties and crystalline quality of the epitaxal layers.

23 citations

Journal ArticleDOI
20 Apr 2007-Pramana
TL;DR: In this paper, the stability of regioregular poly(3hexylthiophene 2,5-diyl) (P3HT) thin films sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes have been investigated under normal environmental conditions (25°C and RH∼45-50%).
Abstract: The stability of regioregular poly(3-hexylthiophene 2,5-diyl) (P3HT) thin films sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes have been investigated under normal environmental conditions (25°C and RH∼45–50%). Electrical and optical properties of ITO/P3HT/Al devices have been studied over a period of 30 days. Mobility μ of the order of 10−4 cm2/V-s has been obtained from the V2 law in the as-deposited P3HT films. Scanning electron microscopy (SEM) investigations show blistering of Al contacts in devices with a poly(3,4-ethylenedioxythiophene) (PEDOT) interlayer on application of voltage whereas no blistering is seen in devices without PEDOT. The results have been explained in terms of trap generation and propagation and the moisture-absorbing nature of PEDOT.

23 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used time-resolved charge-detection techniques to probe virtual tunneling processes in a double quantum dot and established the experimental equivalence between cotunneling and sequential tunneling into molecular states for electron transport.
Abstract: We use time-resolved charge-detection techniques to probe virtual tunneling processes in a double quantum dot. The process involves an energetically forbidden state separated by an energy $\ensuremath{\delta}$ from the Fermi energy in the leads. The nonzero tunneling probability can be interpreted as cotunneling, which occurs as a direct consequence of time-energy uncertainty. For small energy separation the electrons in the quantum dots delocalize and form molecular states. In this regime we establish the experimental equivalence between cotunneling and sequential tunneling into molecular states for electron transport in a double quantum dot. Finally, we investigate inelastic cotunneling processes involving excited states of the quantum dots. Using the time-resolved charge-detection techniques, we are able to extract the shot noise of the current in the cotunneling regime.

23 citations

Journal ArticleDOI
TL;DR: In this paper, single phase polycrystalline lithium ferrites modified with Zn and Mn were synthesized by solid state reaction method and the prepared samples exhibit a markedly increased value in real part of dielectric constant ( e ) and a lowest loss tangent (tan δ ) for x = 0.04 measured in the frequency range 70-Hz to 1-MHz.

23 citations

Journal ArticleDOI
TL;DR: It is shown that energy can be distributed between distant parts of the sample, which may provide a resolution to an outstanding puzzle concerning energy conservation in transport through quantum Hall edges.
Abstract: Quantum Hall edge channels offer an efficient and controllable platform to study quantum transport in one dimension. Such channels are a prospective tool for the efficient transfer of quantum information at the nanoscale, and play a vital role in exposing intriguing physics. Electric current along the edge carries energy and heat leading to inelastic scattering, which may impede coherent transport. Several experiments attempting to probe the concomitant energy redistribution along the edge reported energy loss via unknown mechanisms of inelastic scattering. Here we employ quantum dots to inject and extract electrons at specific energies, to spectrally analyse inelastic scattering inside quantum Hall edge channels. We show that the missing energy puzzle could be untangled by incorporating non-local Auger-like processes, in which energy is redistributed between spatially separate parts of the sample. Our theoretical analysis, accounting for the experimental results, challenges common-wisdom analyses which ignore such non-local decay channels.

23 citations


Authors

Showing all 1757 results

NameH-indexPapersCitations
Alain Dufresne11135845904
Yang Ren7988026341
Klaus Ensslin7063821385
Werner Wegscheider6993321984
Takashi Takahashi6542414234
Liu Hao Tjeng6432213752
Nicholas E. Geacintov6345315636
Manfred Sigrist6146818362
Thomas Ihn6147514159
Takafumi Sato5926311032
Christoph Stampfer5931514422
Christian Colliex5828914618
Takashi Mizokawa5740011697
Eberhard Bodenschatz5737413208
Bertram Batlogg551909459
Network Information
Related Institutions (5)
National Institute for Materials Science
29.2K papers, 880.9K citations

86% related

Indian Institute of Technology Madras
36.4K papers, 590.4K citations

84% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

84% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

83% related

Tata Institute of Fundamental Research
21.7K papers, 622.3K citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202210
202174
202087
201992
201878