scispace - formally typeset
Search or ask a question
Institution

Solid State Physics Laboratory

FacilityDelhi, India
About: Solid State Physics Laboratory is a facility organization based out in Delhi, India. It is known for research contribution in the topics: Quantum dot & Dielectric. The organization has 1754 authors who have published 2597 publications receiving 50601 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the field dependence of the vortex core size is incorporated in the London model, in order to describe reversible magnetization M(B,T) for a number of materials with large Ginzburg-Landau parameter {kappa}.
Abstract: The field dependence of the vortex core size {zeta}(B) is incorporated in the London model, in order to describe reversible magnetization M(B,T) for a number of materials with large Ginzburg-Landau parameter {kappa}. The dependence {zeta}(B) is directly related to deviations in M(ln B) from linear behavior prescribed by the standard London model. A simple method to extract {zeta}(B) from the magnetization data is proposed. For most materials examined, {zeta}(B) so obtained decreases with increasing field and is in qualitative agreement both with behavior extracted from {micro}SR and small-angle neutron-scattering data and with that predicted theoretically.

15 citations

Journal ArticleDOI
TL;DR: In this article, a series of tetravalent germanium substituted magnesium ferrites with the compositional formula Mg1+xGexFe2−2xO4.

15 citations

Book ChapterDOI
01 Jan 1984
TL;DR: In this article, various metal-semiconductor systems, investigated during the last two decades, are tabulated in Table 1 and it can be seen from this table that the investigations are mainly centered round Schottky contacts based on Si and GaAs.
Abstract: Metal-semiconductor contacts showing rectifying properties are finding more and more applications in modern semiconductor devices technology(1) Apart from the fact that they are comparatively easy to fabricate and incorporate into integrated circuits, the main reason for their wide usage is that they do not exhibit minority carrier effects (e.g., long reverse recovery time, diffusion capacitance, etc.) similar to those observed in p-n junction devices. Various metal-semiconductor systems, investigated during the last two decades, are tabulated in Table 1. It can be seen from this table that the investigations are mainly centered round Schottky contacts based on Si and GaAs. Amongst the two, Si-based Schottky contacts are at present being used in a wide variety of devices and integrated circuits. Recent advances in GaAs material and processing techniques have, however, shown that not only can all of the semiconductor device structures realized in Si be fabricated in GaAs, but optical and very high speed integrated circuits can also be realized in the not-too-distant future. It is because of this as well as metallurgical and reliability considerations that the activity pertaining to GaAs-based Schottky contacts has increased appreciably during the last few years.

15 citations

Posted Content
TL;DR: In this paper, the authors review the theoretical basics of bilayer graphene and study the evolution of the band structure under the influence of external perturbations such as transverse electric fields or strain, and highlight their key role concerning the ease to experimentally probe the presence of a Lifshitz transition.
Abstract: Bilayer graphene is a highly tunable material: not only can one tune the Fermi energy using standard gates, as in single-layer graphene, but the band structure can also be modified by external perturbations such as transverse electric fields or strain. We review the theoretical basics of the band structure of bilayer graphene and study the evolution of the band structure under the influence of these two external parameters. We highlight their key role concerning the ease to experimentally probe the presence of a Lifshitz transition, which consists in a change of Fermi contour topology as a function of energy close to the edges of the conduction and valence bands. Using a device geometry that allows the application of exceptionally high displacement fields, we then illustrate in detail the way to probe the topology changes experimentally using quantum Hall effect measurements in a gapped bilayer graphene system.

15 citations

Journal ArticleDOI
TL;DR: Using X-ray reflectivity, the authors investigated both sides of a classical monolayer smectic-A to nematic phase transition in a polar NCS substituted compound.
Abstract: Using X-ray reflectivity smectic layering is investigated on both sides of a classical monolayer smectic-A to nematic phase transition in a polar NCS substituted compound. At the surface, only monolayering is observed; there is no breaking of up-down symmetry. This contrasts with the situation of a smectic-A1 phase in a polar CN substituted compound, where bilayering occurs at the surface. Consequences for molecular models of smectic-A phases are discussed Etude de la stratification en couches d'un cristal liquide polaire NCS lorsqu'il passe d'une phase nematique a une structure smectique A classique en monocouches. Etude de la surface du materiau par mesure de la reflectivite des rayons X

15 citations


Authors

Showing all 1757 results

NameH-indexPapersCitations
Alain Dufresne11135845904
Yang Ren7988026341
Klaus Ensslin7063821385
Werner Wegscheider6993321984
Takashi Takahashi6542414234
Liu Hao Tjeng6432213752
Nicholas E. Geacintov6345315636
Manfred Sigrist6146818362
Thomas Ihn6147514159
Takafumi Sato5926311032
Christoph Stampfer5931514422
Christian Colliex5828914618
Takashi Mizokawa5740011697
Eberhard Bodenschatz5737413208
Bertram Batlogg551909459
Network Information
Related Institutions (5)
National Institute for Materials Science
29.2K papers, 880.9K citations

86% related

Indian Institute of Technology Madras
36.4K papers, 590.4K citations

84% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

84% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

83% related

Tata Institute of Fundamental Research
21.7K papers, 622.3K citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202210
202174
202087
201992
201878