Institution
South China Agricultural University
Education•Guangzhou, China•
About: South China Agricultural University is a education organization based out in Guangzhou, China. It is known for research contribution in the topics: Population & Gene. The organization has 22105 authors who have published 18165 publications receiving 294993 citations. The organization is also known as: SCAU & South China Agricultural College.
Topics: Population, Gene, Virus, Genome, Genus
Papers published on a yearly basis
Papers
More filters
TL;DR: The toolkit incorporates over 130 functions, which are designed to meet the increasing demand for big-data analyses, ranging from bulk sequence processing to interactive data visualization, and a new plotting engine developed to maximum their interactive ability.
Abstract: The rapid development of high-throughput sequencing techniques has led biology into the big-data era Data analyses using various bioinformatics tools rely on programming and command-line environments, which are challenging and time-consuming for most wet-lab biologists Here, we present TBtools (a T oolkit for B iologists integrating various biological data-handling tools ), a stand-alone software with a user-friendly interface The toolkit incorporates over 130 functions, which are designed to meet the increasing demand for big-data analyses, ranging from bulk sequence processing to interactive data visualization A wide variety of graphs can be prepared in TBtools using a new plotting engine (“JIGplot”) developed to maximize their interactive ability; this engine allows quick point-and-click modification of almost every graphic feature TBtools is platform-independent software that can be run under all operating systems with Java Runtime Environment 16 or newer It is freely available to non-commercial users at https://githubcom/CJ-Chen/TBtools/releases
5,173 citations
TL;DR: The emergence of MCR-1 heralds the breach of the last group of antibiotics, polymyxins, by plasmid-mediated resistance, in Enterobacteriaceae and emphasise the urgent need for coordinated global action in the fight against pan-drug-resistant Gram-negative bacteria.
Abstract: Summary Background Until now, polymyxin resistance has involved chromosomal mutations but has never been reported via horizontal gene transfer. During a routine surveillance project on antimicrobial resistance in commensal Escherichia coli from food animals in China, a major increase of colistin resistance was observed. When an E coli strain, SHP45, possessing colistin resistance that could be transferred to another strain, was isolated from a pig, we conducted further analysis of possible plasmid-mediated polymyxin resistance. Herein, we report the emergence of the first plasmid-mediated polymyxin resistance mechanism, MCR-1, in Enterobacteriaceae. Methods The mcr-1 gene in E coli strain SHP45 was identified by whole plasmid sequencing and subcloning. MCR-1 mechanistic studies were done with sequence comparisons, homology modelling, and electrospray ionisation mass spectrometry. The prevalence of mcr-1 was investigated in E coli and Klebsiella pneumoniae strains collected from five provinces between April, 2011, and November, 2014. The ability of MCR-1 to confer polymyxin resistance in vivo was examined in a murine thigh model. Findings Polymyxin resistance was shown to be singularly due to the plasmid-mediated mcr-1 gene. The plasmid carrying mcr-1 was mobilised to an E coli recipient at a frequency of 10 −1 to 10 −3 cells per recipient cell by conjugation, and maintained in K pneumoniae and Pseudomonas aeruginosa . In an in-vivo model, production of MCR-1 negated the efficacy of colistin. MCR-1 is a member of the phosphoethanolamine transferase enzyme family, with expression in E coli resulting in the addition of phosphoethanolamine to lipid A. We observed mcr-1 carriage in E coli isolates collected from 78 (15%) of 523 samples of raw meat and 166 (21%) of 804 animals during 2011–14, and 16 (1%) of 1322 samples from inpatients with infection. Interpretation The emergence of MCR-1 heralds the breach of the last group of antibiotics, polymyxins, by plasmid-mediated resistance. Although currently confined to China, MCR-1 is likely to emulate other global resistance mechanisms such as NDM-1. Our findings emphasise the urgent need for coordinated global action in the fight against pan-drug-resistant Gram-negative bacteria. Funding Ministry of Science and Technology of China, National Natural Science Foundation of China.
3,647 citations
TL;DR: A high-quality genome sequence of domesticated tomato is presented, a draft sequence of its closest wild relative, Solanum pimpinellifolium, is compared, and the two tomato genomes are compared to each other and to the potato genome.
Abstract: Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.
2,687 citations
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.
Abstract: As one of the most appealing and attractive technologies, heterogeneous photocatalysis has been utilized to directly harvest, convert and store renewable solar energy for producing sustainable and green solar fuels and a broad range of environmental applications. Due to their unique physicochemical, optical and electrical properties, a wide variety of g-C3N4-based photocatalysts have been designed to drive various reduction and oxidation reactions under light irradiation with suitable wavelengths. In this review, we have systematically summarized the photocatalytic fundamentals of g-C3N4-based photocatalysts, including fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts. The versatile properties of g-C3N4-based photocatalysts are highlighted, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties. Various design strategies are also thoroughly reviewed, including band-gap engineering, defect control, dimensionality tuning, pore texture tailoring, surface sensitization, heterojunction construction, co-catalyst and nanocarbon loading. Many important applications are also addressed, such as photocatalytic water splitting (H2 evolution and overall water splitting), degradation of pollutants, carbon dioxide reduction, selective organic transformations and disinfection. Through reviewing the important state-of-the-art advances on this topic, it may provide new opportunities for designing and constructing highly effective g-C3N4-based photocatalysts for various applications in photocatalysis and other related fields, such as solar cell, photoelectrocatalysis, electrocatalysis, lithium battery, supercapacitor, fuel cell and separation and purification.
2,132 citations
Commonwealth Scientific and Industrial Research Organisation1, Rutgers University2, Heidelberg Institute for Theoretical Studies3, University of Jena4, University of Bonn5, University of Vienna6, Naturhistorisches Museum7, University of Tsukuba8, Landcare Research9, Johns Hopkins University10, University of Hamburg11, Ehime University12, Florida Museum of Natural History13, Staatliches Museum für Naturkunde Stuttgart14, National Evolutionary Synthesis Center15, Australian National University16, Macquarie University17, American Museum of Natural History18, University of Memphis19, University of Guadalajara20, Bavarian Academy of Sciences and Humanities21, Natural History Museum22, Karlsruhe Institute of Technology23, California Academy of Sciences24, South China Agricultural University25, North Carolina State University26, Hokkaido University27
TL;DR: The phylogeny of all major insect lineages reveals how and when insects diversified and provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
Abstract: Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
1,998 citations
Authors
Showing all 22258 results
Name | H-index | Papers | Citations |
---|---|---|---|
Jun Wang | 166 | 1093 | 141621 |
Kwok-Yung Yuen | 137 | 1173 | 100119 |
Guoyao Wu | 122 | 764 | 56270 |
Kevin C. Jones | 114 | 744 | 50207 |
Xin Li | 114 | 2778 | 71389 |
Jun Wang | 106 | 1031 | 49206 |
Ming Hung Wong | 103 | 710 | 39738 |
Wei Liu | 102 | 2927 | 65228 |
Chi-Tang Ho | 102 | 1220 | 46288 |
Wei Wang | 95 | 3544 | 59660 |
Jonathan P. Lynch | 94 | 298 | 26495 |
Andrew A. Meharg | 94 | 374 | 32945 |
Lihua Xiao | 93 | 495 | 32721 |
Xiang Gao | 92 | 1359 | 42047 |
Chao Wang | 91 | 561 | 32854 |