scispace - formally typeset
Search or ask a question

Showing papers by "Southeast University published in 2015"


Journal ArticleDOI
TL;DR: A distributed adaptive consensus protocol is designed to achieve leader-follower consensus in the presence of a leader with a zero input for any communication graph containing a directed spanning tree with the leader as the root node.
Abstract: This technical note addresses the distributed consensus protocol design problem for multi-agent systems with general linear dynamics and directed communication graphs. Existing works usually design consensus protocols using the smallest real part of the nonzero eigenvalues of the Laplacian matrix associated with the communication graph, which however is global information. In this technical note, based on only the agent dynamics and the relative states of neighboring agents, a distributed adaptive consensus protocol is designed to achieve leader-follower consensus in the presence of a leader with a zero input for any communication graph containing a directed spanning tree with the leader as the root node. The proposed adaptive protocol is independent of any global information of the communication graph and thereby is fully distributed. Extensions to the case with multiple leaders are further studied.

799 citations


Journal ArticleDOI
TL;DR: Experimental measurements and density functional theory calculations indicate that the formation of the Fe═O intermediate structure is a key step to promoting the conversion of benzene to phenol, paving the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis and electrocatalysis.
Abstract: Coordinatively unsaturated (CUS) iron sites are highly active in catalytic oxidation reactions; however, maintaining the CUS structure of iron during heterogeneous catalytic reactions is a great challenge. Here, we report a strategy to stabilize single-atom CUS iron sites by embedding highly dispersed FeN4 centers in the graphene matrix. The atomic structure of FeN4 centers in graphene was revealed for the first time by combining high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy with low-temperature scanning tunneling microscopy. These confined single-atom iron sites exhibit high performance in the direct catalytic oxidation of benzene to phenol at room temperature, with a conversion of 23.4% and a yield of 18.7%, and can even proceed efficiently at 0°C with a phenol yield of 8.3% after 24 hours. Both experimental measurements and density functional theory calculations indicate that the formation of the Fe═O intermediate structure is a key step to promoting the conversion of benzene to phenol. These findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis and electrocatalysis.

678 citations


Journal ArticleDOI
TL;DR: This review summarizes the recent advances in the understanding of the mechanisms by which key regulators of apoptosis, autophagy, and necroptosis participate in cancer metastasis and discusses the crosstalk between apoptosis-autophagy-and-novoptosis involved in the regulation of cancer metastatic processes.
Abstract: Metastasis is a crucial hallmark of cancer progression, which involves numerous factors including the degradation of the extracellular matrix (ECM), the epithelial-to-mesenchymal transition (EMT), tumor angiogenesis, the development of an inflammatory tumor microenvironment, and defects in programmed cell death. Programmed cell death, such as apoptosis, autophagy, and necroptosis, plays crucial roles in metastatic processes. Malignant tumor cells must overcome these various forms of cell death to metastasize. This review summarizes the recent advances in the understanding of the mechanisms by which key regulators of apoptosis, autophagy, and necroptosis participate in cancer metastasis and discusses the crosstalk between apoptosis, autophagy, and necroptosis involved in the regulation of cancer metastasis.

665 citations


Journal ArticleDOI
TL;DR: In this paper, strong many-body Coulomb interactions were shown to be strong enough to create four-body biexcitonic states in monolayer transition metal dichalcogenides.
Abstract: Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states.

582 citations


Journal ArticleDOI
Jinjuan Xue1, Shuaishuai Ma1, Yuming Zhou1, Zewu Zhang1, Man He1 
TL;DR: A novel plasmonic photocatalyst, Au/Pt/g-C3N4, was prepared by a facile calcination-photodeposition technique and enhanced photocatalytic activity for antibiotic tetracycline hydrochloride (TC-HCl) degradation was attributed to the surface plAsmon resonance effect of Au and electron-sink function of Pt nanoparticles, synergistically facilitating the photocatalysis process.
Abstract: A novel plasmonic photocatalyst, Au/Pt/g-C3N4, was prepared by a facile calcination-photodeposition technique. The samples were characterized by X-ray diffraction, energy-dispersive spectroscopy, transmission electron microscopy, and UV–vis diffuse reflectance spectroscopy, and the results demonstrated that the Au and Pt nanoparticles (7–15 nm) were well-dispersed on the surfaces of g-C3N4. The Au/Pt codecorated g-C3N4 heterostructure displayed enhanced photocatalytic activity for antibiotic tetracycline hydrochloride (TC-HCl) degradation, and the degradation rate was 3.4 times higher than that of pure g-C3N4 under visible light irradiation. The enhancement of photocatalytic activity could be attributed to the surface plasmon resonance effect of Au and electron-sink function of Pt nanoparticles, which improve the optical absorption property and photogenerated charge carriers separation of g-C3N4, synergistically facilitating the photocatalysis process. Finally, a possible photocatalytic mechanism for degr...

553 citations


Journal ArticleDOI
TL;DR: A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area.
Abstract: Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism (spins and/or magnetic field) and electricity (electric dipoles and/or electric field). In spite of the long research history in the whole twentieth century, the discipline of multiferroicity has never been so highly active as that in the first decade of the twenty-first century, and it has become one of the hottest disciplines of condensed matter physics and materials science. A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area. The availability of more multiferroic materials and improved magnetoelectric performance are approaching to make the applications within reach. While seminal review articles covering the major progress before 2010 are available, an updated review addressing the n...

549 citations


Journal ArticleDOI
TL;DR: In this paper, the authors summarized the important research activities on multiferroics, especially magnetoelectricity and related physics in the last six years, and addressed the physical mechanisms regarding magneto-lectric coupling so that the backbone of this divergent discipline can be highlighted.
Abstract: Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism and electricity. The discipline of multiferroicity has never been so highly active as that in the first decade of the twenty-first century, and it has become one of the hottest disciplines of condensed matter physics and materials science. A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area. The availability of more multiferroic materials and improved magnetoelectric performance are approaching to make the applications within reach. While seminal review articles covering the major progress before 2010 are available, an updated review addressing the new achievements since that time becomes imperative. In this review, following a concise outline of the basic knowledge of multiferroicity and magnetoelectricity, we summarize the important research activities on multiferroics, especially magnetoelectricity and related physics in the last six years. We consider not only single-phase multiferroics but also multiferroic heterostructures. We address the physical mechanisms regarding magnetoelectric coupling so that the backbone of this divergent discipline can be highlighted. A series of issues on lattice symmetry, magnetic ordering, ferroelectricity generation, electromagnon excitations, multiferroic domain structure and domain wall dynamics, and interfacial coupling in multiferroic heterostructures, will be revisited in an updated framework of physics. In addition, several emergent phenomena and related physics, including magnetic skyrmions and generic topological structures associated with magnetoelectricity will be discussed.

529 citations


Journal ArticleDOI
TL;DR: In this paper, a double V-shaped metasurface that can efficiently convert linear polarizations of electromagnetic (EM) waves in wideband is proposed, which can be used in many applications, such as reflector antennas, imaging systems, remote sensors, and radiometers.
Abstract: In this paper, a double V-shaped metasurface that can efficiently convert linear polarizations of electromagnetic (EM) waves in wideband is proposed. Based on the electric and magnetic resonant features of a single V-shaped particle, four EM resonances are generated in a V-shaped pair, leading to significant bandwidth expansion of cross-polarized reflections. The simulation results show that the proposed metasurface is able to convert linearly polarized waves into cross-polarized waves in ultrawideband from 12.4 to 27.96 GHz, with an average polarization conversion ratio (PCR) of 90%. The experimental results are in good agreement with the numerical simulations. Compared to published designs, the proposed polarization converter has a simple geometry but an ultrawideband and hence can be used in many applications, such as reflector antennas, imaging systems, remote sensors, and radiometers. The method can also be extended to the terahertz band.

493 citations


Journal ArticleDOI
TL;DR: A systematical category for link prediction techniques and problems is presented, and some future challenges of the link prediction in social networks are discussed.
Abstract: In social networks, link prediction predicts missing links in current networks and new or dissolution links in future networks, is important for mining and analyzing the evolution of social networks. In the past decade, many works have been done about the link prediction in social networks. The goal of this paper is to comprehensively review, analyze and discuss the state-of-the-art of the link prediction in social networks. A systematical category for link prediction techniques and problems is presented. Then link prediction techniques and problems are analyzed and discussed. Typical applications of link prediction are also addressed. Achievements and roadmaps of some active research groups are introduced. Finally, some future challenges of the link prediction in social networks are discussed.

488 citations


Journal ArticleDOI
TL;DR: In this article, a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications is presented.
Abstract: This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking control scheme is applied to both single- and three-phase multilevel inverters, which allows independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is also proposed. An experimental three-phase seven-level cascaded H-bridge inverter has been built utilizing nine H-bridge modules (three modules per phase). Each H-bridge module is connected to a 185-W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.

478 citations


Journal ArticleDOI
M. Aguilar, D. Aisa1, Behcet Alpat, A. Alvino  +308 moreInstitutions (42)
TL;DR: The detailed variation with rigidity of the helium flux spectral index is presented for the first time and the spectral index progressively hardens at rigidities larger than 100 GV.
Abstract: Knowledge of the precise rigidity dependence of the helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. A precise measurement of the helium flux in primary cosmic rays with rigidity (momentum/charge) from 1.9 GV to 3 TV based on 50 million events is presented and compared to the proton flux. The detailed variation with rigidity of the helium flux spectral index is presented for the first time. The spectral index progressively hardens at rigidities larger than 100 GV. The rigidity dependence of the helium flux spectral index is similar to that of the proton spectral index though the magnitudes are different. Remarkably, the spectral index of the proton to helium flux ratio increases with rigidity up to 45 GV and then becomes constant; the flux ratio above 45 GV is well described by a single power law.

Journal ArticleDOI
TL;DR: Pb-layered perovskite (benzylammonium)2PbCl4 is ferroelectric with semiconducting behaviours, and this finding throws light on the new properties of the hybrid organo-plumbate or stannate compounds and provides a new way to develop new semiconductor ferroelectrics.
Abstract: Inorganic semiconductor ferroelectrics such as BiFeO3 have shown great potential in photovoltaic and other applications. Currently, semiconducting properties and the corresponding application in optoelectronic devices of hybrid organo-plumbate or stannate are a hot topic of academic research; more and more of such hybrids have been synthesized. Structurally, these hybrids are suitable for exploration of ferroelectricity. Therefore, the design of molecular ferroelectric semiconductors based on these hybrids provides a possibility to obtain new or high-performance semiconductor ferroelectrics. Here we investigated Pb-layered perovskites, and found the layer perovskite (benzylammonium)2PbCl4 is ferroelectric with semiconducting behaviours. It has a larger ferroelectric spontaneous polarization Ps=13 μC cm(-2) and a higher Curie temperature Tc=438 K with a band gap of 3.65 eV. This finding throws light on the new properties of the hybrid organo-plumbate or stannate compounds and provides a new way to develop new semiconductor ferroelectrics.

Journal ArticleDOI
TL;DR: A successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques is reported.
Abstract: Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and (57)Fe Mossbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity.

Journal ArticleDOI
TL;DR: The proposed method offers a new way to control scattering of terahertz waves and can be implemented using conventional lithography, and it is shown that multi-bit coding metasurfaces have strong abilities to control teraHertz waves by designing-specific coding sequences.
Abstract: The terahertz region is a special region of the electromagnetic spectrum that incorporates the advantages of both microwaves and infrared light waves. In the past decade, metamaterials with effective medium parameters or gradient phases have been studied to control terahertz waves and realize functional devices. Here, we present a new approach to manipulate terahertz waves by using coding metasurfaces that are composed of digital coding elements. We propose a general coding unit based on a Minkowski closed-loop particle that is capable of generating 1-bit coding (with two phase states of 0 and 180°), 2-bit coding (with four phase states of 0, 90°, 180°, and 270°), and multi-bit coding elements in the terahertz frequencies by using different geometric scales. We show that multi-bit coding metasurfaces have strong abilities to control terahertz waves by designing-specific coding sequences. As an application, we demonstrate a new scattering strategy of terahertz waves—broadband and wide-angle diffusion—using a 2-bit coding metasurface with a special coding design and verify it by both numerical simulations and experiments. The presented method opens a new route to reducing the scattering of terahertz waves. A team in China has demonstrated a new strategy for controlling terahertz waves by using ‘coding’ metasurfaces to attain broadband diffusion. Metamaterials have previously been used to control terahertz waves and develop functional devices. Now, Tie Jun Cui and co-workers have developed metasurfaces composed of one-, two- and three-bit digital coding elements based on Minkowski loops. They demonstrated their coding surfaces by showing that metasurfaces with appropriately designed coding sequences can be used to strongly manipulate terahertz waves. In particular, they realized broadband, wide-angle diffusion using a two-bit coding metasurface with a special design and obtained good agreement between the measured results and numerical simulations. The proposed method offers a new way to control scattering of terahertz waves and can be implemented using conventional lithography.

Journal ArticleDOI
TL;DR: The experimental findings are consistent with theoretical predictions of spin-polarized conduction and valence bands at the K point of the Brillouin zone, with the minimum gap occurring between bands of opposite electron spin.
Abstract: Transition metal dichalcogenides in the class MX_{2} (M=Mo, W; X=S, Se) have been identified as direct-gap semiconductors in the monolayer limit. Here, we examine light emission of monolayer WSe_{2} using temperature-dependent photoluminescence and time-resolved photoluminescence spectroscopy. We present experimental evidence for the existence of an optically forbidden dark state of the band-gap exciton that lies tens of meV below the optically bright state. The presence of the dark state is manifest in the strong quenching of light emission observed at reduced temperatures. The experimental findings are consistent with theoretical predictions of spin-polarized conduction and valence bands at the K point of the Brillouin zone, with the minimum gap occurring between bands of opposite electron spin.

Journal ArticleDOI
TL;DR: In this article, a systematic review of previous studies is proposed for facilitating sharing useful research findings and accessing future trends in construction safety research, including safety competency, accident statistics, design for safety, and safety culture.

Journal ArticleDOI
TL;DR: Lift is proposed, an intuitive yet effective algorithm that constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results.
Abstract: Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the very instance representation of each example is employed in the discrimination processes of all class labels. However, this popular strategy might be suboptimal as each label is supposed to possess specific characteristics of its own. In this paper, another strategy to learn from multi-label data is studied, where label-specific features are exploited to benefit the discrimination of different class labels. Accordingly, an intuitive yet effective algorithm named Lift , i.e. multi-label learning with Label specIfic FeaTures , is proposed. Lift firstly constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results. Comprehensive experiments on a total of 17 benchmark data sets clearly validate the superiority of Lift against other well-established multi-label learning algorithms as well as the effectiveness oflabel-specific features.

Journal ArticleDOI
TL;DR: This work develops asymptotically necessary and sufficient conditions for optimal downlink transmission that require only statistical channel state information at the transmitter and proposes a beam division multiple access (BDMA) transmission scheme that simultaneously serves multiple users via different beams.
Abstract: We study multicarrier multiuser multiple-input multiple-output (MU-MIMO) systems, in which the base station employs an asymptotically large number of antennas. We analyze a fully correlated channel matrix and provide a beam domain channel model, where the channel gains are independent of sub-carriers. For this model, we first derive a closed-form upper bound on the achievable ergodic sum-rate, based on which, we develop asymptotically necessary and sufficient conditions for optimal downlink transmission that require only statistical channel state information at the transmitter. Furthermore, we propose a beam division multiple access (BDMA) transmission scheme that simultaneously serves multiple users via different beams. By selecting users within non-overlapping beams, the MU-MIMO channels can be equivalently decomposed into multiple single-user MIMO channels; this scheme significantly reduces the overhead of channel estimation, as well as, the processing complexity at transceivers. For BDMA transmission, we work out an optimal pilot design criterion to minimize the mean square error (MSE) and provide optimal pilot sequences by utilizing the Zadoff-Chu sequences. Simulations demonstrate the near-optimal performance of BDMA transmission and the advantages of the proposed pilot sequences.

Journal ArticleDOI
TL;DR: An approximate analytical expression is derived for the uplink achievable rate of a massive multiinput multioutput (MIMO) antenna system when finite precision analog-digital converters (ADCs) and the common maximal-ratio combining technique are used at the receivers.
Abstract: In this letter, we derive an approximate analytical expression for the uplink achievable rate of a massive multiinput multioutput (MIMO) antenna system when finite precision analog-digital converters (ADCs) and the common maximal-ratio combining technique are used at the receivers. To obtain this expression, we treat quantization noise as an additive quantization noise model. Considering the obtained expression, we show that low-resolution ADCs lead to a decrease in the achievable rate but the performance loss can be compensated by increasing the number of receiving antennas. In addition, we investigate the relation between the number of antennas and the ADC resolution, as well as the power-scaling law. These discussions support the feasibility of equipping highly economical ADCs with low resolution in practical massive MIMO systems.


Journal ArticleDOI
TL;DR: In this article, the authors analyzed four basic IPT circuits with series-series (SS), series-parallel (SP), parallel series (PS), and parallel parallel (PP) compensations systematically to identify conditions for realizing load-independent output current or voltage, as well as resistive input impedance.
Abstract: The inductive power transfer (IPT) technique in battery charging applications has many advantages compared to conventional plug-in systems. Due to the dependencies on transformer characteristics, loading profile, and operating frequency of an IPT system, it is not a trivial design task to provide the battery the required constant charging current (CC) or constant battery charging voltage (CV) efficiently under the condition of a wide load range possibly defined by the charging profile. This paper analyzes four basic IPT circuits with series–series (SS), series–parallel (SP), parallel–series (PS), and parallel–parallel (PP) compensations systematically to identify conditions for realizing load-independent output current or voltage, as well as resistive input impedance. Specifically, one load-independent current output circuit and one load-independent voltage output circuit having the same transformer, compensating capacitors, and operating frequency can be readily combined into a hybrid topology with fewest additional switches to facilitate the transition from CC to CV. Finally, hybrid topologies using either SS and PS compensation or SP and PP compensation are proposed for battery charging. Fixed-frequency duty cycle control can be easily implemented for the converters.

Journal ArticleDOI
TL;DR: Exosomes/microvesicles secreted by iPS cells are very effective at transmitting cytoprotective signals to cardiomyocytes in the setting of MIR, and represent novel biological nanoparticles that offer the benefits of iPS cell therapy without the risk of tumorigenicity.

Journal ArticleDOI
TL;DR: It is found that UCA1 was aberrantly upregulated in HCC tissues and associated with TNM stage, metastasis and postoperative survival, and a novel lncRNA- miRNA-mRNA regulatory network that is U CA1-miR-216b-FGFR1-ERK signaling pathway in H CC is elucidated, which may help to lead a better understanding of the pathogenesis of HCC.
Abstract: // Feng Wang 1, * , Hou-Qun Ying 2, * , Bang-Shun He 1 , Yu-Qin Pan 1 , Qi-Wen Deng 1 , Hui-Ling Sun 3 , Jie Chen 3 , Xian Liu 1 , Shu-Kui Wang 1 1 Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China 2 Medical college, Southeast University, Nanjing, Jiangsu, China 3 Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China * These authors have contributed equally to this work Correspondence to: Shu-Kui Wang, e-mail: shukwangnj@163.com Keywords: hepatocellular carcinoma, lncRNA, UCA1, miR-216b, FGFR1 Received: November 17, 2014 Accepted: January 26, 2015 Published: February 11, 2015 ABSTRACT The long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been recently shown to be dysregulated, which plays an important role in the progression of several cancers. However, the biological role and clinical significance of UCA1 in the carcinogenesis of hepatocellular carcinoma (HCC) remain unclear. Herein, we found that UCA1 was aberrantly upregulated in HCC tissues and associated with TNM stage, metastasis and postoperative survival. UCA1 depletion inhibited the growth and metastasis of HCC cell lines in vitro and in vivo . Furthermore, UCA1 could act as an endogenous sponge by directly binding to miR-216b and downregulation miR-216b expression. In addition, UCA1 could reverse the inhibitory effect of miR-216b on the growth and metastasis of HCC cells, which might be involved in the derepression of fibroblast growth factor receptor 1 (FGFR1) expression, a target gene of miR-216b, and the activation of ERK signaling pathway. Taken together, our data highlights the pivotal role of UCA1 in the tumorigenesis of HCC. Moreover, the present study elucidates a novel lncRNA-miRNA-mRNA regulatory network that is UCA1-miR-216b-FGFR1-ERK signaling pathway in HCC, which may help to lead a better understanding the pathogenesis of HCC and probe the feasibility of lncRNA-directed diagnosis and therapy for this deadly disease.

Journal ArticleDOI
TL;DR: In this article, the SCC with Fly Ash (FA), Ground granulated blast furnace slag (GGBFS), as mineral admixtures for the production of the self-compacting concrete (SCC) had been evaluated.

Journal ArticleDOI
TL;DR: In this article, a broadband terahertz (THz) metamaterial absorber was constructed by stacking 12 metallic bars of varying lengths on three polyimide layers with equal spacing, and a broadband absorption spectrum was formed through merging multiple successive resonance peaks.
Abstract: We present the simulation, implementation, and measurement of a broadband terahertz (THz) metamaterial absorber. By stacking 12 metallic bars of varying lengths on three polyimide layers with equal spacing, a broadband absorption spectrum is formed through merging multiple successive resonance peaks. The measured total absorption exceeds 95% from 0.81 to 1.32 THz at the normal incidence and the full width at half maximum is 64% (from 0.76 to 1.48 THz). The absorption decreases with fluctuations as the incident angle increases but remains above 62% even at the incident angle of 40°. The physical explanation to the absorption mechanism is presented and verified by a 9-bar example, which exhibits narrower absorption bandwidth. It is also experimentally demonstrated that the proposed structure is robust against misalignment of each metallic layer.

Journal ArticleDOI
TL;DR: The behaviors and the robustness in steady state and the performances in transient state are evaluated and the PTC and PCC methods are carried out experimentally for an IM on the same test bench.
Abstract: Model-based predictive direct control methods are advanced control strategies in the field of power electronics. To control an induction machine (IM), the predictive torque control (PTC) method evaluates the electromagnetic torque and stator flux in the cost function. The switching vector selected for the use in the insulated gate bipolar transistors (IGBTs) minimizes the error between references and the predicted values. The system constraints can be easily included. The predictive current control (PCC) strategy assesses the stator current in the cost function. The weighting factor is not necessary. Both the PTC and PCC methods are very useful direct control methods that do not require the use of a modulator. In this paper, the PTC and PCC methods are carried out experimentally for an IM on the same test bench. The behaviors and the robustness in steady state and the performances in transient state are evaluated.

Journal ArticleDOI
TL;DR: This paper proposes estimation of only the channel parameters of the desired links in a target cell, but those of the interference links from adjacent cells, which achieves much better performance in terms of the channel estimation accuracy and achievable rates in the presence of pilot contamination.
Abstract: Pilot contamination posts a fundamental limit on the performance of massive multiple-input–multiple-output (MIMO) antenna systems due to failure in accurate channel estimation. To address this problem, we propose estimation of only the channel parameters of the desired links in a target cell, but those of the interference links from adjacent cells. The required estimation is, nonetheless, an underdetermined system. In this paper, we show that if the propagation properties of massive MIMO systems can be exploited, it is possible to obtain an accurate estimate of the channel parameters. Our strategy is inspired by the observation that for a cellular network, the channel from user equipment to a base station is composed of only a few clustered paths in space. With a very large antenna array, signals can be observed under extremely sharp regions in space. As a result, if the signals are observed in the beam domain (using Fourier transform), the channel is approximately sparse, i.e., the channel matrix contains only a small fraction of large components, and other components are close to zero. This observation then enables channel estimation based on sparse Bayesian learning methods, where sparse channel components can be reconstructed using a small number of observations. Results illustrate that compared to conventional estimators, the proposed approach achieves much better performance in terms of the channel estimation accuracy and achievable rates in the presence of pilot contamination.

Journal ArticleDOI
TL;DR: A nationwide, cross-sectional survey of adult patients who were admitted to hospital in 2013 in academic or local hospitals from 22 provinces in mainland China aimed to evaluate the burden of AKI and assess the availability of diagnosis and treatment and found that 1·4-2·9 million people with AKI were admitted in China in 2013.

Journal ArticleDOI
TL;DR: It is elucidated that hAJ activates the mTOR pathway in cancer cells, which drives the progression from single cells to micrometastases and provides potential therapeutic targets to block progression toward osteolytic metastases.

Journal ArticleDOI
TL;DR: This work summarizes how miRNAs regulate apoptotic, autophagic and necroptotic pathways and cancer progression and discusses how mi RNAs link different types of cell death.
Abstract: MicroRNAs (miRNAs) are endogenous 22 nt non-coding RNAs that target mRNAs for cleavage or translational repression. Numerous miRNAs regulate programmed cell death including apoptosis, autophagy and necroptosis. We summarize how miRNAs regulate apoptotic, autophagic and necroptotic pathways and cancer progression. We also discuss how miRNAs link different types of cell death.