scispace - formally typeset
Search or ask a question
Institution

Southeast University

EducationNanjing, China
About: Southeast University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: MIMO & Control theory. The organization has 66363 authors who have published 79434 publications receiving 1170576 citations. The organization is also known as: SEU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a genetic algorithm incorporating Monte Carlo simulation is proposed to solve the problem of deadheading in a special case of the stop-skipping problem, allowing a bus vehicle to skip stops between the dispatching terminal point and a designated stop.
Abstract: When a bus is late and behind schedule, the stop-skipping scheme allows the bus vehicle to skip one or more stops to reduce its travel time. The deadheading problem is a special case of the stop-skipping problem, allowing a bus vehicle to skip stops between the dispatching terminal point and a designated stop. At the planning level, the optimal operating plans for these two schemes should be tackled for the benefits of bus operator as well as passengers. This paper aims to propose a methodology for this objective. Thus, three objectives are first proposed to reflect the benefits of bus operator and/or passengers, including minimizing the total waiting time, total in-vehicle travel time and total operating cost. Then, assuming random bus travel time, the stop-skipping is formulated as an optimization model minimizing the weighted sum of the three objectives. The deadheading problem can be formulated via the same minimization model further adding several new constraints. Then, a Genetic Algorithm Incorporating Monte Carlo Simulation is proposed to solve the optimization model. As validated by a numerical example, the proposed algorithm can obtain a satisfactory solution close to the global optimum.

251 citations

Journal ArticleDOI
TL;DR: The generation of non-spherical polymersomes with multiple compartments is demonstrated, using glass capillary microfluidics to prepare W/O/W double emulsions with different number of inner aqueous drops.
Abstract: Polymersomes are vesicles which consist of compartments surrounded by membrane walls that are composed of lamellae of block copolymers; these are important for numerous applications in encapsulation and delivery of active ingredients such as food additives, drugs, fragrances and enzymes [2] . Polymersomes are typically prepared by precipitating block copolymers from their solvents through addition of a poor solvent for the copolymers, or by rehydrating a dried film of the copolymers. The unfavorable interactions between blocks in the copolymer and the poor solvent induce formation of aggregate structures ranging from micelles, wormlike micelles and vesicles. However, the resultant polymersomes are highly polydisperse and have poor encapsulation efficiency. Recently, a new approach has been developed to fabricate monodisperse polymersomes by using double emulsions as templates. Water-in-oil-in-water (W/O/W) double emulsions with a core-shell structure are first prepared in capillary microfluidic devices. Diblock copolymers, dissolved in the oil shell phase, assemble onto the walls of the polymersomes upon removal of the oil by evaporation 7] after adhesion of the diblock copolymeradsorbed interfaces. This approach leads to polymersomes with high size uniformity and excellent encapsulation efficiency; it also enables precise tuning of the polymersome structures. Advances in techniques for fabricating polymersomes have led to controlled spherical polymersomes with a single compartment. However, non-spherical capsules with multiple compartments also have great potential for encapsulation and delivery applications. By storing incompatible actives or functional components separately, polymersomes with multiple compartments can achieve encapsulation of multiple actives in single capsules and reduce the risk of cross contamination. Moreover, multiple reactants can be encapsulated separately to allow reaction upon triggering. By tuning the number of compartments containing each reactant, the stoichiometric ratio of the reactants for each reaction can be manipulated. These multi-compartment polymersomes will create new opportunities to deliver not only multiple functional components, but also multiple reactants for reactions on demand. In addition, with the versatility of synthetic polymer chemistry to tune properties such as polymer length, biocompatibility, functionality and degradation rates, non-spherical polymersomes with multiple compartments can be tailored for specific delivery targets. However, polymersomes that have been reported to date are almost exclusively spherical in shape, and have only one compartment; since most conventional polymersome fabrication processes rely on self-assembly of the block copolymer lamellae, little control over the size and structure of the resultant polymersomes is achieved. With the conventional emulsion-based methods, non-spherical droplets are also not favored because interfacial tension between the two immiscible phases favors spherical droplets, which have the smallest surface area for a given volume. Recent advances in microfluidic technologies enable high degree of control in droplet generation, and ease in tuning the device geometry; this offer a new opportunity to fabricate double emulsion with controlled morphology, which serve as templates for fabricating the nonspherical multi-compartment polymersomes. However, such investigations have not, as yet, been carried out. In this work, we demonstrate the generation of non-spherical polymersomes with multiple compartments. We use glass capillary microfluidics to prepare W/O/W double emulsions with different number of inner aqueous drops. These emulsions are initially stabilized by the amphiphilic diblock copolymers in the oil shells, which consist of a mixture of a volatile good solvent and a less volatile poor solvent for the copolymers. As the good solvent evaporates, the copolymers at the W/O and the O/W interfaces are attracted towards each other to form the membranes. As a result, neighboring inner droplets adhere to one another; this leads to formation of multi-compartment polymersomes, as schematically illustrated in Scheme 1. We also use a modified glass capillary device for generating double emulsions with two distinct inner phases containing different encapsulants; this process leads to the fabrication of non-spherical polymersomes with multiple compartments for separate encapsulation of multiple actives. A glass capillary microfluidic device is used to generate double emulsions with controlled morphology. (See Fig. S1 in Supporting Information) Due to the high degree of control afforded by microfluidics, the number of inner droplets in a W/O/W double emulsion system can be controlled by varying the flow rates of the three phases independently; 12] an example of the process is shown in Fig. 1A. The thickness of the double emulsion shells can be adjusted by changing the flow rates; however, as long as the flow rates are not altered enough to change the number of inner droplets of the double emulsion templates, change in shell thickness does not affect the morphology of the final polymersomes since all solvents in the shells is removed in subsequent steps. To prepare the double emulsion templates, multiple inner droplets are dispersed in drops of a mixture of chloroform and hexanes (36:65 v/v) with 10 mg/mL poly(ethylene-glycol)-b-poly(lactic acid), (PEG(5000)-bPLA(5000)); the drops-in-drops are suspended and stabilized in a poly(vinyl alcohol) (PVA) solution. A homopolymer, PEG, is added [] Prof. D. A. Weitz, Dr. H. C. Shum, Dr. S. H. Kim School of Engineering and Applied Sciences, Department of Physics and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (USA) Fax: (+1) 617-495-0426 E-mail: weitz@seas.harvard.edu Homepage: http://www.seas.harvard.edu/projects/weitzlab/

251 citations

Journal ArticleDOI
TL;DR: An approach for multi-criteria decision making under intuitionistic fuzzy environment is developed, and an example to show the behavior of the proposed operators is illustrated.
Abstract: Archimedean t-conorm and t-norm are generalizations of a lot of other t-conorms and t-norms, such as Algebraic, Einstein, Hamacher and Frank t-conorms and t-norms or others, and some of them have been applied to intuitionistic fuzzy set, which contains three functions: the membership function, the non-membership function and the hesitancy function describing uncertainty and fuzziness more objectively. Recently, Beliakov et al. [3] constructed some operations about intuitionistic fuzzy sets based on Archimedean t-conorm and t-norm, from which an aggregation principle is proposed for intuitionistic fuzzy information. In this paper, we propose some other operations on intuitionistic fuzzy sets, study their properties and relationships, and based on which, we study the properties of the aggregation principle proposed by Beliakov et al. [3], and give some specific intuitionistic fuzzy aggregation operators, which can be considered as the extensions of the known ones. In the end, we develop an approach for multi-criteria decision making under intuitionistic fuzzy environment, and illustrate an example to show the behavior of the proposed operators.

251 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper analyzed the 2008 wetland distribution in China and discussed wetland changes and their drivers over the past 30 years using four wetland maps for all China have been produced, based on Landsat and CBERS-02B remote sensing data.
Abstract: Four wetland maps for all China have been produced, based on Landsat and CBERS-02B remote sensing data between 1978 and 2008 (1978, 1990, 2000 and 2008). These maps were mainly developed by manual interpretation and validated by substantial field investigation in 2009. Based on these maps, we analyzed the 2008 wetland distribution in China and discussed wetland changes and their drivers over the past 30 years. (i) There were about 324097 km(2) of wetlands in 2008, for which inland marshes or swamps were the most common wetland type (35%), with lakes (26%) second. Most of the wetlands were in Heilongjiang, Inner Mongolia, Qinghai and Tibet, occupying about 55% of the national wetland area. (ii) From 1978 to 2008, China's wetland area continually and significantly decreased, by about 33% based on changes in the wetland map. This was in sharp contrast to the increase in artificial wetlands, which increased by about 122%. Inland marshes accounted for the main loss of total wetlands from 1978 to 2000. From 2000 through 2008, riverine and lacustrine wetlands constituted the main wetland loss. Fortunately however, the rate of wetland loss decreased from 5523 to 831 km(2)/a. (iii) The change ratio of lost natural wetlands (including inland and coastal wetlands) to non-wetlands has decreased slightly over the past 30 years. From 1978 to 1990, nearly all natural wetlands (98%) lost were transformed into non-wetlands. However, the ratio declined to 86% from 1990 to 2000, and to 77% from 2000 to 2008. (iv) All Chinese provinces were divided into three groups according to patterns of wetland changes, which could relate to the driving forces of such changes. Tibet was completely different from other provinces, as it was one representative example in which there was a net wetland increase, because of global warming and decreased human activity since 1990. Increased economic development caused considerable wetland loss in most eastern provinces, and artificial wetlands increased.

251 citations

Journal ArticleDOI
TL;DR: It is shown that the newly proposed non-smooth control-based DSMC can guarantee the same level of accuracy for the sliding mode motion as that of an equivalent control- based DSMC.

250 citations


Authors

Showing all 66906 results

NameH-indexPapersCitations
H. S. Chen1792401178529
Yang Yang1712644153049
Gang Chen1673372149819
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Guanrong Chen141165292218
Wei Huang139241793522
Jun Chen136185677368
Jian Li133286387131
Xiaoou Tang13255394555
Zhen Li127171271351
Tao Zhang123277283866
Bo Wang119290584863
Jinde Cao117143057881
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

96% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023228
20221,302
20219,149
20208,667
20197,684
20186,464