scispace - formally typeset
Search or ask a question
Institution

Southeast University

EducationNanjing, China
About: Southeast University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: MIMO & Control theory. The organization has 66363 authors who have published 79434 publications receiving 1170576 citations. The organization is also known as: SEU.


Papers
More filters
Journal ArticleDOI
TL;DR: Inspired by the huge success of deep reinforcement learning (DRL) on resolving complicated control problems, a DRL based framework is developed to solve this non-convex optimization problem of intelligent reflecting surface (IRS) wireless transmission system.
Abstract: This letter investigates the intelligent reflecting surface (IRS)-aided multiple-input single-output wireless transmission system. Particularly, the optimization of the passive phase shift of each element at IRS to maximize the downlink received signal-to-noise ratio is considered. Inspired by the huge success of deep reinforcement learning (DRL) on resolving complicated control problems, we develop a DRL based framework to solve this non-convex optimization problem. Numerical results reveal that the proposed DRL based framework can achieve almost the upper bound of the received SNR with relatively low time consumption.

237 citations

Journal ArticleDOI
TL;DR: A practical transmission model for an ambient backscatter system, where a tag wishes to send some low-rate messages to a reader with the help of an ambient RF signal source, and then provide fundamental studies of noncoherent symbol detection when all channel state information of the system is unknown is formulated.
Abstract: Ambient backscatter, an emerging communication mechanism where battery-free devices communicate with each other via backscattering ambient radio frequency (RF) signals, has achieved much attention recently because of its desirable application prospects in the Internet of Things. In this paper, we formulate a practical transmission model for an ambient backscatter system, where a tag wishes to send some low-rate messages to a reader with the help of an ambient RF signal source, and then provide fundamental studies of noncoherent symbol detection when all channel state information of the system is unknown. For the first time, a maximum likelihood detector is derived based on the joint probability density function of received signal vectors. In order to ease availability of prior knowledge of the ambient RF signal and reduce computational complexity of the algorithm, we design a joint-energy detector and derive its corresponding detection threshold. The analytical bit error rate (BER) and BER-based outage probability are also obtained in a closed form, which helps with designing system parameters. An estimation method to obtain detection-required parameters and comparison of computational complexity of the detectors are presented as complementary discussions. Simulation results are provided to corroborate theoretical studies.

237 citations

Journal ArticleDOI
TL;DR: This paper presents an analytical characterization of the ergodic capacity of amplify-and-forward (AF) MIMO dual-hop relay channels, assuming that the channel state information is available at the destination terminal only.
Abstract: This paper presents an analytical characterization of the ergodic capacity of amplify-and-forward (AF) MIMO dual-hop relay channels, assuming that the channel state information is available at the destination terminal only. In contrast to prior results, our expressions apply for arbitrary numbers of antennas and arbitrary relay configurations. We derive an expression for the exact ergodic capacity, simplified closed-form expressions for the high SNR regime, and tight closed-form upper and lower bounds. These results are made possible by employing recent tools from finite-dimensional random matrix theory, which are used to derive new closed-form expressions for various statistical properties of the equivalent AF MIMO dual-hop relay channel, such as the distribution of an unordered eigenvalue and certain random determinant properties. Based on the analytical capacity expressions, we investigate the impact of the system and channel characteristics, such as the antenna configuration and the relay power gain. We also demonstrate a number of interesting relationships between the dual-hop AF MIMO relay channel and conventional point-to-point MIMO channels in various asymptotic regimes.

237 citations

Journal ArticleDOI
TL;DR: A deep recurrent neural network-based algorithm is proposed to solve the energy efficient resource allocation (RA) problem for the NOMA-based heterogeneous IoT with fast convergence and low computational complexity.
Abstract: The Internet of Things (IoT) has attracted significant attentions in the fifth generation mobile networks and the smart cities. However, considering the large numbers of connectivity demands, it is vital to improve the spectrum efficiency (SE) of the IoT with an affordable power consumption. To improve the SE, the nonorthogonal multiple access (NOMA) technology is newly proposed through accommodating multiple users in the same spectrums. As a result, in this paper, an energy efficient resource allocation (RA) problem is introduced for the NOMA-based heterogeneous IoT. At first, we assume the successive interference cancelation (SIC) is imperfect for practical implementations. Then, based on the analyzing method for cognitive radio networks, we present a stepwise RA scheme for the mobile users and the IoT users with the mutual interference management. Third, we propose a deep recurrent neural network-based algorithm to solve the problem optimally and rapidly. Moreover, a priorities and rate demands-based user scheduling method is supplemented, to coordinate the access of the heterogeneous users with the limited radio resource. At last, the simulation results verify that the deep learning-based scheme is able to provide optimal RA results for the NOMA heterogeneous IoT with fast convergence and low computational complexity. Compared with the conventional orthogonal frequency division multiple access system, the NOMA system with imperfect SIC yields better performance on the SE and the scale of connectivity, at the cost of high power consumption and low energy efficiency.

236 citations

Journal ArticleDOI
TL;DR: Enhanced transport performances and ambient stability of black-phosphorus devices by Te doping are presented, which provides a facile route for achieving airstable black- PH phosphorus devices.
Abstract: Element doping allows manipulation of the electronic properties of 2D materials. Enhanced transport performances and ambient stability of black-phosphorus devices by Te doping are presented. This provides a facile route for achieving airstable black-phosphorus devices.

236 citations


Authors

Showing all 66906 results

NameH-indexPapersCitations
H. S. Chen1792401178529
Yang Yang1712644153049
Gang Chen1673372149819
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Guanrong Chen141165292218
Wei Huang139241793522
Jun Chen136185677368
Jian Li133286387131
Xiaoou Tang13255394555
Zhen Li127171271351
Tao Zhang123277283866
Bo Wang119290584863
Jinde Cao117143057881
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

96% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023228
20221,302
20219,149
20208,667
20197,684
20186,464