scispace - formally typeset
Search or ask a question
Institution

Southeast University

EducationNanjing, China
About: Southeast University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Computer science & MIMO. The organization has 66363 authors who have published 79434 publications receiving 1170576 citations. The organization is also known as: SEU.


Papers
More filters
Journal ArticleDOI
01 Feb 2010-Sensors
TL;DR: ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol), respectively.
Abstract: Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol), respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization) and biosensor performances.

186 citations

Journal ArticleDOI
TL;DR: This article proposes a new three-dimensional (3D) wireless system architecture enabled by aerial IRS (AIRS), based on a novel 3D beam broadening and flattening technique, where the passive array of the AIRS is divided into sub-arrays of appropriate size, and their phase shifts are designed to form a flattened beam pattern with adjustable beamwidth catering to the size of the coverage area.
Abstract: Intelligent reflecting surface (IRS) is a promising technology to reconfigure wireless channels, which brings a new degree of freedom for the design of future wireless networks. This article proposes a new three-dimensional (3D) wireless system architecture enabled by aerial IRS (AIRS). Compared to the conventional terrestrial IRS, AIRS enjoys more deployment flexibility as well as wider-view signal reflection, thanks to its high altitude and thus more likelihood of establishing line-of-sight (LoS) links with ground source/destination nodes. We aim to maximize the worst-case signal-to-noise ratio (SNR) over all locations in a target area by jointly optimizing the transmit beamforming for the source node, as well as the placement and 3D passive beamforming for the AIRS. The formulated problem is non-convex and difficult to solve. To gain useful insights, we first consider the special case of maximizing the SNR at a given target location, for which the optimal solution is obtained in closed-form. The result shows that the optimal horizontal AIRS placement only depends on the ratio between the source-destination distance and the AIRS altitude. Then for the general case of AIRS-enabled area coverage, we propose an efficient solution by decoupling the AIRS passive beamforming design to maximize the worst-case array gain , from its placement optimization by balancing the resulting angular span and the cascaded channel path loss. Our proposed solution is based on a novel 3D beam broadening and flattening technique, where the passive array of the AIRS is divided into sub-arrays of appropriate size, and their phase shifts are designed to form a flattened beam pattern with adjustable beamwidth catering to the size of the coverage area. Both uniform linear array (ULA)-based and uniform planar array (UPA)-based AIRSs are considered in our design, which enable two-dimensional (2D) and 3D passive beamforming, respectively. Numerical results show that the proposed designs achieve significant performance gains over the benchmark schemes.

186 citations

Journal ArticleDOI
TL;DR: In this article, the effects of nanoparticles on the most important thermophysical properties of phase change materials (PCMs) are discussed and the applications of nano-PCMs in the fields such as thermal energy storage (TES), thermal control unit (TCU), photovoltaic thermal thermal (PVT), solar still (SS), and building are examined.

186 citations

Journal ArticleDOI
TL;DR: In this article, a facile method to fabricate super-hydrophobic/superoleophilic membranes based on a fluorine-free system by the combination of electrospun polyimide (PI) nanofibers and a novel in-situ polymerized polybenzoxazine (PBZ) functional containing silica nanoparticles (SNP) is proposed.

186 citations

Journal ArticleDOI
TL;DR: In this article, a planar spoof surface plasmon polaritons (SPP) waveguide is used for frequency-controlled broadband and broad-angle beam scanning in planar integrated communication systems.
Abstract: Frequency-controlled broadband and broad-angle beam scanning is proposed using a circular-patch array fed by planar spoof surface plasmon polaritons (SPPs). Here, a row of circularly metallic patches is placed near an ultrathin planar spoof SPP waveguide. When the SPP wave is transmitted through the waveguide, the circular patches are fed at the same time. Because of the phase difference fed to the patches, the proposed structure can realize wide-angle beam scanning from backward direction to forward direction as the frequency changes, breaking the limit of traditional leaky-wave antennas. Both numerical simulations and measured results demonstrate good performance of the proposed structure. It is shown that the scanning angle can reach 55° with an average gain level of 9.8 dBi. The proposed frequency scanning patch array is of great value in planar integrated communication systems.

186 citations


Authors

Showing all 66906 results

NameH-indexPapersCitations
H. S. Chen1792401178529
Yang Yang1712644153049
Gang Chen1673372149819
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Guanrong Chen141165292218
Wei Huang139241793522
Jun Chen136185677368
Jian Li133286387131
Xiaoou Tang13255394555
Zhen Li127171271351
Tao Zhang123277283866
Bo Wang119290584863
Jinde Cao117143057881
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

96% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023228
20221,302
20219,150
20208,667
20197,684
20186,464