scispace - formally typeset
Search or ask a question
Institution

Southeast University

EducationNanjing, China
About: Southeast University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: MIMO & Control theory. The organization has 66363 authors who have published 79434 publications receiving 1170576 citations. The organization is also known as: SEU.


Papers
More filters
Journal ArticleDOI
TL;DR: This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances with results that extend and improve upon earlier work.
Abstract: This brief investigates globally exponential synchronization for linearly coupled neural networks (NNs) with time-varying delay and impulsive disturbances. Since the impulsive effects discussed in this brief are regarded as disturbances, the impulses should not happen too frequently. The concept of average impulsive interval is used to formalize this phenomenon. By referring to an impulsive delay differential inequality, we investigate the globally exponential synchronization of linearly coupled NNs with impulsive disturbances. The derived sufficient condition is closely related with the time delay, impulse strengths, average impulsive interval, and coupling structure of the systems. The obtained criterion is given in terms of an algebraic inequality which is easy to be verified, and hence our result is valid for large-scale systems. The results extend and improve upon earlier work. As a numerical example, a small-world network composing of impulsive coupled chaotic delayed NN nodes is given to illustrate our theoretical result.

358 citations

Journal ArticleDOI
Hong Shen1, Wei Xu1, Shulei Gong2, Zhenyao He1, Chunming Zhao1 
TL;DR: In this article, the authors investigate transmission optimization for intelligent reflecting surface (IRS) assisted multi-antenna systems from the physical-layer security perspective, where the design goal is to maximize the system secrecy rate subject to the source transmit power constraint and the unit modulus constraints imposed on phase shifts at the IRS.
Abstract: We investigate transmission optimization for intelligent reflecting surface (IRS) assisted multi-antenna systems from the physical-layer security perspective. The design goal is to maximize the system secrecy rate subject to the source transmit power constraint and the unit modulus constraints imposed on phase shifts at the IRS. To solve this complicated non-convex problem, we develop an efficient alternating algorithm where the solutions to the transmit covariance of the source and the phase shift matrix of the IRS are achieved in closed form and semi-closed form, respectively. The convergence of the proposed algorithm is guaranteed theoretically. Simulation results validate the performance advantage of the proposed optimized design.

356 citations

Journal ArticleDOI
TL;DR: This work develops asymptotically necessary and sufficient conditions for optimal downlink transmission that require only statistical channel state information at the transmitter and proposes a beam division multiple access (BDMA) transmission scheme that simultaneously serves multiple users via different beams.
Abstract: We study multicarrier multiuser multiple-input multiple-output (MU-MIMO) systems, in which the base station employs an asymptotically large number of antennas. We analyze a fully correlated channel matrix and provide a beam domain channel model, where the channel gains are independent of sub-carriers. For this model, we first derive a closed-form upper bound on the achievable ergodic sum-rate, based on which, we develop asymptotically necessary and sufficient conditions for optimal downlink transmission that require only statistical channel state information at the transmitter. Furthermore, we propose a beam division multiple access (BDMA) transmission scheme that simultaneously serves multiple users via different beams. By selecting users within non-overlapping beams, the MU-MIMO channels can be equivalently decomposed into multiple single-user MIMO channels; this scheme significantly reduces the overhead of channel estimation, as well as, the processing complexity at transceivers. For BDMA transmission, we work out an optimal pilot design criterion to minimize the mean square error (MSE) and provide optimal pilot sequences by utilizing the Zadoff-Chu sequences. Simulations demonstrate the near-optimal performance of BDMA transmission and the advantages of the proposed pilot sequences.

356 citations

Journal ArticleDOI
TL;DR: In this paper, the benefits, challenges, and prospects of biomass-based chemical looping technologies in various configurations have been discussed in-depth to provide important insight into the development of innovative BECCS technologies based on chemical loops.
Abstract: Biomass is a promising renewable energy resource despite its low energy density, high moisture content and complex ash components The use of biomass in energy production is considered to be approximately carbon neutral, and if it is combined with carbon capture technology, the overall energy conversion may even be negative in terms of net CO2 emission, which is known as BECCS (bioenergy with carbon capture and storage) The initial development of BECCS technologies often proposes the installation of a CO2 capture unit downstream of the conventional thermochemical conversion processes, which comprise combustion, pyrolysis or gasification Although these approaches would benefit from the adaptation of already well developed energy conversion processes and CO2 capture technologies, they are limited in terms of materials and energy integration as well as systems engineering, which could lead to truly disruptive technologies for BECCS Recently, a new generation of transformative energy conversion technologies including chemical looping have been developed In particular, chemical looping employs solid looping materials and it uniquely allows inherent capture of CO2 during the conversion of fuels In this review, the benefits, challenges, and prospects of biomass-based chemical looping technologies in various configurations have been discussed in-depth to provide important insight into the development of innovative BECCS technologies based on chemical looping

356 citations

Journal ArticleDOI
TL;DR: An approximate analytical expression is derived for the uplink achievable rate of a massive multiinput multioutput (MIMO) antenna system when finite precision analog-digital converters (ADCs) and the common maximal-ratio combining technique are used at the receivers.
Abstract: In this letter, we derive an approximate analytical expression for the uplink achievable rate of a massive multiinput multioutput (MIMO) antenna system when finite precision analog-digital converters (ADCs) and the common maximal-ratio combining technique are used at the receivers. To obtain this expression, we treat quantization noise as an additive quantization noise model. Considering the obtained expression, we show that low-resolution ADCs lead to a decrease in the achievable rate but the performance loss can be compensated by increasing the number of receiving antennas. In addition, we investigate the relation between the number of antennas and the ADC resolution, as well as the power-scaling law. These discussions support the feasibility of equipping highly economical ADCs with low resolution in practical massive MIMO systems.

353 citations


Authors

Showing all 66906 results

NameH-indexPapersCitations
H. S. Chen1792401178529
Yang Yang1712644153049
Gang Chen1673372149819
Xiang Zhang1541733117576
Rui Zhang1512625107917
Yi Yang143245692268
Guanrong Chen141165292218
Wei Huang139241793522
Jun Chen136185677368
Jian Li133286387131
Xiaoou Tang13255394555
Zhen Li127171271351
Tao Zhang123277283866
Bo Wang119290584863
Jinde Cao117143057881
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

96% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023228
20221,302
20219,149
20208,667
20197,684
20186,464