scispace - formally typeset
Search or ask a question
Institution

Southwest University

EducationChongqing, China
About: Southwest University is a education organization based out in Chongqing, China. It is known for research contribution in the topics: Population & Bombyx mori. The organization has 29772 authors who have published 27755 publications receiving 409441 citations. The organization is also known as: Southwest University in Chongqing & SWU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the performance of a modified BNNT surface was investigated by DFT calculation, and the combination of CuO and BNNTs proved to be stable by using the modified model and showed high reactivity and sensitivity toward dissolved gas in oil.

111 citations

Journal ArticleDOI
Zhu Han1, Danyang Nan1, Huan Yang1, Qianqian Sun1, Shuang Pan1, Hui Liu1, Xiaoli Hu1 
TL;DR: In this article, a novel method was established for the ratiometric fluorescence detection of Cu2+ and glutathione (GSH) by carbon quantum dots (CQDs), and it was fabricated through one-pot facile hydrothermal treatment using o-phenylenediamine (OPD) and citric acid as precursors.
Abstract: A novel method was established for the ratiometric fluorescence detection of Cu2+ and glutathione (GSH) by carbon quantum dots (CQDs), and it was fabricated through one-pot facile hydrothermal treatment using o-phenylenediamine (OPD) and citric acid as precursors. Based on the selective oxidation reaction of OPD with Cu2+, the detection strategy of Cu2+ was proposed using ratiometric fluorescence probe. The oxidation production (2,3-diaminophenazine) of OPD, obtained through the oxidation reaction of OPD and Cu2+, not only emerged a new emission peak at 562 nm, but also quenched the fluorescence of CQDs with maximum emission at 446 nm. The mechanism was Forster resonance energy transfer (FRET) between CQDs and 2,3-diaminophenazine (oxOPD). Furthermore, the oxidation reaction between Cu2+ and OPD could be inhibited when added GSH into the solution, which could prevent the fluorescence of CQDs being quenched. The sensing system showed high sensitivity toward Cu2+ and GSH in a range of 0.25–10.0 μmol L−1 and 1.0–80.0 μmol L−1 with a detection limit 0.076 μmol L−1 and 0.30 μmol L−1, respectively. Besides, the proposed method could apply to efficient quantification of Cu2+ and GSH in practical samples.

111 citations

Journal ArticleDOI
TL;DR: A sensitive amperometric immunosensor for carcinoembryonic antigen (CEA) that can detect the CEA through one-step immunoASSay and would be valuable for clinical immunoassay.

110 citations

Journal ArticleDOI
Feinan Hu1, Chenyang Xu1, Hang Li1, Song Li1, Zhenghong Yu1, Yue Li1, Xinhua He 
TL;DR: In this article, the surface hydration force, electrostatic force and van der Waals force of soil/clay particles in aqueous solution were quantitatively evaluated the effects of the three forces on aggregate breakdown.
Abstract: A B S T R A C T Soil aggregates profoundly influence soil fertility and environmental problems, and usually improving soil aggregation is the central issue in soil management. Compared with external forces, the internal forces of soil, i.e., surface hydration force, electrostatic force and van der Waals force, may play a crucial role in aggregate formation and stability. However, there are few quantitative investigations on those fundamental issues. In the present work we aim to calculate surface hydration force, electrostatic force and van der Waals force of soil/clay particles in aqueous solution, and then quantitatively evaluate the effects of the three forces on soil/clay aggregates breakdown. There was critical surface potential in particles interaction pressure and aggregates breakdown, and if the surface potential exceeded this critical point, a further increase of the surface potential could not significantly increase particles interaction pressure and aggregate breakdown. The critical surface potentials for particle interaction pressure were 207.0 and 179.7 mV for the soil and montmorillonite, respectively. Our study suggested two steps in aggregate breakdown when dried aggregates were re-wetted: (1) separating soil particles in aggregates to a distance of 1.2–1.4 nm between two adjacent particle surfaces by the surface hydration forces (swelling process); (2) breaking soil aggregates in a way of explosion or dispersion under strong or weak electric field conditions. Surface hydration force played a crucial role in aggregate swelling, and without this repulsive pressure, a dried aggregate could not be dispersed again after re-wetting.

110 citations

Journal ArticleDOI
01 Mar 2018-Talanta
TL;DR: In this article, the authors used Fe3O4/MIL-101(Fe) composites to directly catalyze luminol chemiluminescence without extra oxidants.

110 citations


Authors

Showing all 29978 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
Hongjie Dai197570182579
Jing Wang1844046202769
Chao Zhang127311984711
Jianjun Liu112104071032
Miao Liu11199359811
Jun Yang107209055257
Eric Westhof9847234825
En-Tang Kang9776338498
Chang Ming Li9789642888
Wei Zhou93164039772
Li Zhang9291835648
Heinz Rennenberg8752726359
Tao Chen8682027714
Xun Wang8460632187
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

91% related

Beijing Normal University
48K papers, 922.8K citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Xiamen University
54.4K papers, 1M citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202395
2022461
20213,537
20203,257
20192,923
20182,479