scispace - formally typeset
Search or ask a question
Institution

Southwest University

EducationChongqing, China
About: Southwest University is a education organization based out in Chongqing, China. It is known for research contribution in the topics: Population & Bombyx mori. The organization has 29772 authors who have published 27755 publications receiving 409441 citations. The organization is also known as: Southwest University in Chongqing & SWU.


Papers
More filters
Journal ArticleDOI
TL;DR: The genome editing and targeted gene mutation in a woody species, Populus tomentosa Carr, is described and the Cas9/sgRNA system can be exploited to precisely edit genomic sequence and effectively create knockout mutations in woody plants.
Abstract: Recently, RNA-guided genome editing using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system has been applied to edit the plant genome in several herbaceous plant species. However, it remains unknown whether this system can be used for genome editing in woody plants. In this study, we describe the genome editing and targeted gene mutation in a woody species, Populus tomentosa Carr. via the CRISPR/Cas9 system. Four guide RNAs (gRNAs) were designed to target with distinct poplar genomic sites of the phytoene desaturase gene 8 (PtoPDS) which are followed by the protospacer-adjacent motif (PAM). After Agrobacterium-mediated transformation, obvious albino phenotype was observed in transgenic poplar plants. By analyzing the RNA-guided genome-editing events, 30 out of 59 PCR clones were homozygous mutants, 2 out of 59 were heterozygous mutants and the mutation efficiency at these target sites was estimated to be 51.7%. Our data demonstrate that the Cas9/sgRNA system can be exploited to precisely edit genomic sequence and effectively create knockout mutations in woody plants.

342 citations

Proceedings ArticleDOI
10 Apr 2016
TL;DR: This paper provides an energy-efficient dynamic offloading and resource scheduling (eDors) policy to reduce energy consumption and shorten application completion time and demonstrates that the eDors algorithm can effectively reduce the EEC by optimally adjusting the CPU clock frequency of SMDs based on the dynamic voltage and frequency scaling (DVFS) technique in local computing, and adapting the transmission power for the wireless channel conditions in cloud computing.
Abstract: Mobile cloud computing (MCC) as an emerging and prospective computing paradigm, can significantly enhance computation capability and save energy of smart mobile devices (SMDs) by offloading computation-intensive tasks from resource-constrained SMDs onto the resource-rich cloud. However, how to achieve energy-efficient computation offloading under the hard constraint for application completion time remains a challenge issue. To address such a challenge, in this paper, we provide an energy-efficient dynamic offloading and resource scheduling (eDors) policy to reduce energy consumption and shorten application completion time. We first formulate the eDors problem into the energy-efficiency cost (EEC) minimization problem while satisfying the task-dependency requirements and the completion time deadline constraint. To solve the optimization problem, we then propose a distributed eDors algorithm consisting of three subalgorithms of computation offloading selection, clock frequency control and transmission power allocation. More importantly, we find that the computation offloading selection depends on not only the computing workload of a task, but also the maximum completion time of its immediate predecessors and the clock frequency and transmission power of the mobile device. Finally, our experimental results in a real testbed demonstrate that the eDors algorithm can effectively reduce the EEC by optimally adjusting the CPU clock frequency of SMDs based on the dynamic voltage and frequency scaling (DVFS) technique in local computing, and adapting the transmission power for the wireless channel conditions in cloud computing.

339 citations

Journal ArticleDOI
16 Oct 2009-Science
TL;DR: It is found that the domesticated silkworms are clearly genetically differentiated from the wild ones, but they have maintained large levels of genetic variability, suggesting a short domestication event involving a large number of individuals.
Abstract: A single-base pair resolution silkworm genetic variation map was constructed from 40 domesticated and wild silkworms, each sequenced to approximately threefold coverage, representing 99.88% of the genome. We identified ∼16 million single-nucleotide polymorphisms, many indels, and structural variations. We find that the domesticated silkworms are clearly genetically differentiated from the wild ones, but they have maintained large levels of genetic variability, suggesting a short domestication event involving a large number of individuals. We also identified signals of selection at 354 candidate genes that may have been important during domestication, some of which have enriched expression in the silk gland, midgut, and testis. These data add to our understanding of the domestication processes and may have applications in devising pest control strategies and advancing the use of silkworms as efficient bioreactors.

337 citations

Journal ArticleDOI
TL;DR: The methylome of a model insect, the silkworm Bombyx mori, is surveyed at single-base resolution using Illumina high-throughput bisulfite sequencing (MethylC-Seq), finding that transposable elements, promoters and ribosomal DNAs are hypomethylated, but in contrast, genomic loci matching small RNAs in gene bodies are densely methylated.
Abstract: Epigenetic regulation in insects may have effects on diverse biological processes. Here we survey the methylome of a model insect, the silkworm Bombyx mori, at single-base resolution using Illumina high-throughput bisulfite sequencing (MethylC-Seq). We conservatively estimate that 0.11% of genomic cytosines are methylcytosines, all of which probably occur in CG dinucleotides. CG methylation is substantially enriched in gene bodies and is positively correlated with gene expression levels, suggesting it has a positive role in gene transcription. We find that transposable elements, promoters and ribosomal DNAs are hypomethylated, but in contrast, genomic loci matching small RNAs in gene bodies are densely methylated. This work contributes to our understanding of epigenetics in insects, and in contrast to previous studies of the highly methylated genomes of Arabidopsis and human, demonstrates a strategy for sequencing the epigenomes of organisms such as insects that have low levels of methylation.

321 citations

Journal ArticleDOI
TL;DR: 4-amino-N-((1-dodecyl-1H-1,2,3-triazol-4-yl)methyl) benzenesulfonamide were found to be the most potent compounds against all the tested strains except for Candida albicans and Candida mycoderma.

320 citations


Authors

Showing all 29978 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
Hongjie Dai197570182579
Jing Wang1844046202769
Chao Zhang127311984711
Jianjun Liu112104071032
Miao Liu11199359811
Jun Yang107209055257
Eric Westhof9847234825
En-Tang Kang9776338498
Chang Ming Li9789642888
Wei Zhou93164039772
Li Zhang9291835648
Heinz Rennenberg8752726359
Tao Chen8682027714
Xun Wang8460632187
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

91% related

Beijing Normal University
48K papers, 922.8K citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Xiamen University
54.4K papers, 1M citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202395
2022461
20213,537
20203,257
20192,923
20182,479