scispace - formally typeset
Search or ask a question

Showing papers by "Spanish National Research Council published in 2005"


Journal ArticleDOI
TL;DR: In this paper, a large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey is presented, which demonstrates the linear growth of structure by gravitational instability between z ≈ 1000 and the present and confirms a firm prediction of the standard cosmological theory.
Abstract: We present the large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey. The survey region covers 0.72h −3 Gpc 3 over 3816 square degrees and 0.16 < z < 0.47, making it the best sample yet for the study of large-scale structure. We find a well-detected peak in the correlation function at 100h −1 Mpc separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between z ≈ 1000 and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to z = 0.35 and z = 1089 to 4% fractional accuracy and the absolute distance to z = 0.35 to 5% accuracy. From the overall shape of the correlation function, we measure the matter density mh 2 to 8% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find m = 0.273 ±0.025+0.123(1+ w0)+0.137K. Including the CMB acoustic scale, we find that the spatial curvature is K = −0.010 ± 0.009 if the dark energy is a cosmological constant. More generally, our results provide a measurement of cosmological distance, and hence an argument for dark energy, based on a geometric method with the same simple physics as the microwave background anisotropies. The standard cosmological model convincingly passes these new and robust tests of its fundamental properties. Subject headings: cosmology: observations — large-scale structure of the universe — distance scale — cosmological parameters — cosmic microwave background — galaxies: elliptical and lenticular, cD

4,428 citations


Journal ArticleDOI
TL;DR: This work has built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment in order to study protein evolution and phylogenetic inference.
Abstract: Summary: Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. Availability: ProtTest is available under the GNU license from http://darwin.uvigo.es Contact: fabascal@uvigo.es

3,150 citations


Journal ArticleDOI
TL;DR: In contrast to the expanding edge, the low-latitude limit (rear edge) of species ranges remains understudied, and the critical importance of rear edge populations as long-term stores of species' genetic diversity and foci of speciation has been little acknowledged.
Abstract: Modern climate change is producing poleward range shifts of numerous taxa, communities and ecosystems worldwide. The response of species to changing environments is likely to be determined largely by population responses at range margins. In contrast to the expanding edge, the low-latitude limit (rear edge) of species ranges remains understudied, and the critical importance of rear edge populations as long-term stores of species' genetic diversity and foci of speciation has been little acknowledged. We review recent findings from the fossil record, phylogeography and ecology to illustrate that rear edge populations are often disproportionately important for the survival and evolution of biota. Their ecological features, dynamics and conservation requirements differ from those of populations in other parts of the range, and some commonly recommended conservation practices might therefore be of little use or even counterproductive for rear edge populations.

1,908 citations


Journal ArticleDOI
TL;DR: Analysis of the resulting networks in different tasks shows that the distribution of functional connections, and the probability of finding a link versus distance are both scale-free and the characteristic path length is small and comparable with those of equivalent random networks.
Abstract: Functional magnetic resonance imaging is used to extract functional networks connecting correlated human brain sites. Analysis of the resulting networks in different tasks shows that (a) the distribution of functional connections, and the probability of finding a link versus distance are both scale-free, (b) the characteristic path length is small and comparable with those of equivalent random networks, and (c) the clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these properties, typical of scale-free small-world networks, reflect important functional information about brain states.

1,508 citations


Journal ArticleDOI
04 Aug 2005-Nature
TL;DR: It is shown that senescent cells exist in premalignant tumours but not in malignant ones, and that senescence is therefore a defining feature of premalign tumours that could prove valuable in the diagnosis and prognosis of cancer.
Abstract: Oncogene-induced senescence is a cellular response that may be crucial for protection against cancer development, but its investigation has so far been restricted to cultured cells that have been manipulated to overexpress an oncogene. Here we analyse tumours initiated by an endogenous oncogene, ras, and show that senescent cells exist in premalignant tumours but not in malignant ones. Senescence is therefore a defining feature of premalignant tumours that could prove valuable in the diagnosis and prognosis of cancer.

1,417 citations


Journal ArticleDOI
William C. Nierman1, William C. Nierman2, Arnab Pain3, Michael J. Anderson4, Jennifer R. Wortman1, Jennifer R. Wortman2, H. Stanley Kim1, H. Stanley Kim2, Javier Arroyo5, Matthew Berriman3, Keietsu Abe6, David B. Archer7, Clara Bermejo5, Joan W. Bennett8, Paul Bowyer4, Dan Chen2, Dan Chen1, Matthew Collins3, Richard Coulsen, Robert L. Davies3, Paul S. Dyer7, Mark L. Farman9, Nadia Fedorova2, Nadia Fedorova1, Natalie D. Fedorova2, Natalie D. Fedorova1, T. Feldblyum1, T. Feldblyum2, Reinhard Fischer10, Nigel Fosker3, Audrey Fraser3, José Luis García11, María Josefa Marcos García12, Ariette Goble3, Gustavo H. Goldman13, Katsuya Gomi6, Sam Griffith-Jones3, R. Gwilliam3, Brian J. Haas2, Brian J. Haas1, Hubertus Haas14, David Harris3, H. Horiuchi15, Jiaqi Huang1, Jiaqi Huang2, Sean Humphray3, Javier Jiménez12, Nancy P. Keller15, H. Khouri1, H. Khouri2, Katsuhiko Kitamoto16, Tetsuo Kobayashi17, Sven Konzack10, Resham Kulkarni1, Resham Kulkarni2, Toshitaka Kumagai18, Anne Lafton19, Jean-Paul Latgé19, Weixi Li9, Angela Lord3, Charles Lu1, Charles Lu2, William H. Majoros1, William H. Majoros2, Gregory S. May20, Bruce L. Miller21, Yasmin Ali Mohamoud1, Yasmin Ali Mohamoud2, María Molina5, Michel Monod22, Isabelle Mouyna19, Stephanie Mulligan2, Stephanie Mulligan1, Lee Murphy3, Susan O'Neil3, Ian T. Paulsen2, Ian T. Paulsen1, Miguel A. Peñalva11, Mihaela Pertea2, Mihaela Pertea1, Claire Price3, Bethan L. Pritchard4, Michael A. Quail3, Ester Rabbinowitsch3, Neil Rawlins3, Marie Adele Rajandream3, Utz Reichard23, Hubert Renauld3, Geoffrey D. Robson4, Santiago Rodríguez de Córdoba11, José Manuel Rodríguez-Peña5, Catherine M. Ronning2, Catherine M. Ronning1, Simon Rutter3, Steven L. Salzberg1, Steven L. Salzberg2, Miguel del Nogal Sánchez12, Juan C. Sánchez-Ferrero11, David L. Saunders3, Kathy Seeger3, Rob Squares3, S. Squares3, Michio Takeuchi24, Fredj Tekaia19, Geoffrey Turner25, Carlos R. Vázquez de Aldana12, J. Weidman2, J. Weidman1, Owen White2, Owen White1, John Woodward3, Jae-Hyuk Yu15, Claire M. Fraser1, Claire M. Fraser2, James E. Galagan26, Kiyoshi Asai18, Masayuki Machida18, Neil Hall3, Neil Hall1, Bart Barrell3, David W. Denning4 
22 Dec 2005-Nature
TL;DR: The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus and revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype.
Abstract: Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.

1,356 citations


Journal ArticleDOI
TL;DR: It is proposed that Snail genes act primarily as survival factors and inducers of cell movement, rather than as inducersof EMT or cell fate.
Abstract: The functions of the Snail family of zinc-finger transcription factors are essential during embryonic development. One of their best-known functions is to induce epithelial to mesenchymal transitions (EMTs), which convert epithelial cells into migratory mesenchymal cells. In recent years, many orthologues of the Snail family have been identified throughout the animal kingdom, and their study is providing new clues about the EMT-dependent and -independent functions of Snail proteins. Here, we discuss these functions and how they influence cell behaviour during development and during diseases such as metastatic cancer. From these findings, we propose that Snail genes act primarily as survival factors and inducers of cell movement, rather than as inducers of EMT or cell fate.

1,313 citations


Journal ArticleDOI
22 Dec 2005-Nature
TL;DR: The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution, and a comparative study with Aspergillus fumigatus and As pergillus oryzae, used in the production of sake, miso and soy sauce, provides new insight into eukaryotic genome evolution and gene regulation.
Abstract: The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation.

1,297 citations


Journal ArticleDOI
17 Nov 2005-Nature
TL;DR: High-speed long-distance communication based on chaos synchronization over a commercial fibre-optic channel is demonstrated, showing that information can be transmitted at high bit rates using deterministic chaos in a manner that is robust to perturbations and channel disturbances unavoidable under real-world conditions.
Abstract: Chaos is good, if you are looking to send encrypted information across a broadband optical network. The idea that the transmission of light-based signals embedded in chaos can provide privacy in data transmission has been demonstrated over short distances in the laboratory. Now it has been shown to work for real, across a commercial fibre-optic channel in the metropolitan area network of Athens, Greece. The results show that the technology is robust to perturbations and channel disturbances unavoidable under real-world conditions. Chaotic signals have been proposed as broadband information carriers with the potential of providing a high level of robustness and privacy in data transmission1,2. Laboratory demonstrations of chaos-based optical communications have already shown the potential of this technology3,4,5, but a field experiment using commercial optical networks has not been undertaken so far. Here we demonstrate high-speed long-distance communication based on chaos synchronization over a commercial fibre-optic channel. An optical carrier wave generated by a chaotic laser is used to encode a message for transmission over 120 km of optical fibre in the metropolitan area network of Athens, Greece. The message is decoded using an appropriate second laser which, by synchronizing with the chaotic carrier, allows for the separation of the carrier and the message. Transmission rates in the gigabit per second range are achieved, with corresponding bit-error rates below 10-7. The system uses matched pairs of semiconductor lasers as chaotic emitters and receivers, and off-the-shelf fibre-optic telecommunication components. Our results show that information can be transmitted at high bit rates using deterministic chaos in a manner that is robust to perturbations and channel disturbances unavoidable under real-world conditions.

1,267 citations


Journal ArticleDOI
07 Jul 2005-Nature
TL;DR: These findings identify a previously undescribed pathway in which a component of the breast tumour microenvironment alters cellular structure in culture and tissue structure in vivo, leading to malignant transformation.
Abstract: The tumour microenvironment can be a potent carcinogen, not only by facilitating cancer progression and activating dormant cancer cells, but also by stimulating tumour formation 1 . We have previously investigated stromelysin-1/matrix metalloproteinase-3 (MMP-3), a stromal enzyme upregulated in many breast tumours 2 , and found that MMP-3 can cause epithelial–mesenchymal transition (EMT) and malignant transformation in cultured cells 3–5 , and genomically unstable mammary carcinomas in transgenic mice 3 . Here we explain the molecular pathways by which MMP-3 exerts these effects: exposure of mouse mammary epithelial cells to MMP-3 induces the expression of an alternatively spliced form of Rac1, which causes an increase in cellular reactive oxygen species (ROS). The ROS stimulate the expression of the transcription factor Snail and EMT, and cause oxidative damage to DNA and genomic instability. These findings identify a previously undescribed pathway in which a component of the breast tumour microenvironment alters cellular structure in culture and tissue structure in vivo, leading to malignant transformation. Cancer is characterized by a progressive series of alterations that disrupt cell and tissue homeostasis. Whereas many of these alterations can be induced by specific mutations, faulty signals from the microenvironment also can act as inducers of tumour development

1,206 citations


Journal ArticleDOI
TL;DR: In this paper, the photometric calibration of the Advanced Camera for Surveys (ACS) was presented, and a significant amount of data has been collected to characterize the on-orbit performance of the three channels.
Abstract: We present the photometric calibration of the Advanced Camera for Surveys (ACS). The ACS was installed in the Hubble Space Telescope (HST) in 2002 March. It comprises three cameras: the Wide Field Channel (WFC), optimized for deep near‐IR survey imaging programs; the High Resolution Channel (HRC), a high‐resolution imager that fully samples the HST point‐spread function (PSF) in the visible; and the Solar Blind Channel (SBC), a far‐UV imager. A significant amount of data has been collected to characterize the on‐orbit performance of the three channels. We give here an overview of the performance and calibration of the two CCD cameras (WFC and HRC) and a description of the best techniques for reducing ACS CCD data. The overall performance is as expected from prelaunch testing of the camera. Surprises were a better‐than‐predicted sensitivity in the visible and near‐IR for both the WFC and HRC and an unpredicted dip in the HRC UV response at ∼3200 A. On‐orbit observations of spectrophotometric stand...

Journal ArticleDOI
TL;DR: Broadening the knowledge of lignocellulose biodegradation processes should contribute to better control of wood-decaying fungi, as well as to the development of new biocatalysts of industrial interest based on these organisms and their enzymes.
Abstract: Wood is the main renewable material on Earth and is largely used as building material and in paper-pulp manufacturing. This review describes the composition of lignocellulosic materials, the different processes by which fungi are able to alter wood, including decay patterns caused by white, brown, and soft-rot fungi, and fungal staining of wood. The chemical, enzymatic, and molecular aspects of the fungal attack of lignin, which represents the key step in wood decay, are also discussed. Modern analytical techniques to investigate fungal degradation and modification of the lignin polymer are reviewed, as are the different oxidative enzymes (oxidoreductases) involved in lignin degradation. These include laccases, high redox potential ligninolytic peroxidases (lignin peroxidase, manganese peroxidase, and versatile peroxidase), and oxidases. Special emphasis is given to the reactions catalyzed, their synergistic action on lignin, and the structural bases for their unique catalytic properties. Broadening our knowledge of lignocellulose biodegradation processes should contribute to better control of wood-decaying fungi, as well as to the development of new biocatalysts of industrial interest based on these organisms and their enzymes. [Int Microbiol 2005; 8(3):195-204]

Journal ArticleDOI
TL;DR: In this paper, the authors propose a new framework to describe the structure and functioning of ecological networks and to assess the probable consequences of biodiversity change, by incorporating body size into theoretical models that explore food web stability and the patterning of energy fluxes.
Abstract: Body size determines a host of species traits that can affect the structure and dynamics of food webs, and other ecological networks, across multiple scales of organization. Measuring body size provides a relatively simple means of encapsulating and condensing a large amount of the biological information embedded within an ecological network. Recently, important advances have been made by incorporating body size into theoretical models that explore food web stability, the patterning of energy fluxes, and responses to perturbations. Because metabolic constraints underpin body-size scaling relationships, metabolic theory offers a potentially useful new framework within which to develop novel models to describe the structure and functioning of ecological networks and to assess the probable consequences of biodiversity change.

Journal ArticleDOI
TL;DR: This is the first report of spontaneous transformation of human adult stem cells, supporting the hypothesis of cancer stem cell origin, and indicates the importance of biosafety studies of mesenchymal stem cell biology to efficiently exploit their full clinical therapeutic potential.
Abstract: Human adult stem cells are being evaluated widely for various therapeutic approaches. Several recent clinical trials have reported their safety, showing them to be highly resistant to transformation. The clear similarities between stem cell and cancer stem cell genetic programs are nonetheless the basis of a recent proposal that some cancer stem cells could derive from human adult stem cells. Here we show that although they can be managed safely during the standard ex vivo expansion period (6-8 weeks), human mesenchymal stem cells can undergo spontaneous transformation following long-term in vitro culture (4-5 months). This is the first report of spontaneous transformation of human adult stem cells, supporting the hypothesis of cancer stem cell origin. Our findings indicate the importance of biosafety studies of mesenchymal stem cell biology to efficiently exploit their full clinical therapeutic potential.

Journal ArticleDOI
TL;DR: A general profile for the proteins of the TetR family of repressors is developed, made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three- dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known.
Abstract: We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, α-, β-, and γ-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.

Journal ArticleDOI
TL;DR: This article summarizes and discusses significant aspects of this general topic, including the analysis of the key activities carried out by the diverse trophic and functional groups of micro-organisms involved in co-operative rhizosphere interactions; a critical discussion of the direct microbe-microbe interactions which results in processes benefiting sustainable agro-ecosystem development.
Abstract: Soil microbial populations are immersed in a framework of interactions known to affect plant fitness and soil quality. They are involved in fundamental activities that ensure the stability and productivity of both agricultural systems and natural ecosystems. Strategic and applied research has demonstrated that certain co-operative microbial activities can be exploited, as a low-input biotechnology, to help sustainable, environmentally-friendly, agro-technological practices. Much research is addressed at improving understanding of the diversity, dynamics, and significance of rhizosphere microbial populations and their cooperative activities. An analysis of the co-operative microbial activities known to affect plant development is the general aim of this review. In particular, this article summarizes and discusses significant aspects of this general topic, including (i) the analysis of the key activities carried out by the diverse trophic and functional groups of micro-organisms involved in cooperative rhizosphere interactions; (ii) a critical discussion of the direct microbe–microbe interactions which results in processes benefiting sustainable agroecosystem development; and (iii) beneficial microbial interactions involving arbuscular mycorrhiza, the omnipresent fungus–plant beneficial symbiosis. The trends of this thematic area will be outlined, from molecular biology and ecophysiological issues to the biotechnological developments for integrated management, to indicate where research is needed in the future.

Journal ArticleDOI
TL;DR: This review wants to offer a panoramic view on current computational trust and reputation models in virtual societies.
Abstract: The scientific research in the area of computational mechanisms for trust and reputation in virtual societies is a recent discipline oriented to increase the reliability and performance of electronic communities. Computer science has moved from the paradigm of isolated machines to the paradigm of networks and distributed computing. Likewise, artificial intelligence is quickly moving from the paradigm of isolated and non-situated intelligence to the paradigm of situated, social and collective intelligence. The new paradigm of the so called intelligent or autonomous agents and multi-agent systems (MAS) together with the spectacular emergence of the information society technologies (specially reflected by the popularization of electronic commerce) are responsible for the increasing interest on trust and reputation mechanisms applied to electronic societies. This review wants to offer a panoramic view on current computational trust and reputation models.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed a sample of ~2600 Spitzer MIPS 24 μm sources and located in the Chandra Deep Field-South to characterize the evolution of the comoving infrared (IR) energy density of the universe up to z ~ 1.
Abstract: We analyze a sample of ~2600 Spitzer MIPS 24 μm sources brighter than ~80 μJy and located in the Chandra Deep Field-South to characterize the evolution of the comoving infrared (IR) energy density of the universe up to z ~ 1. Using published ancillary optical data, we first obtain a nearly complete redshift determination for the 24 μm objects associated with R 24 mag counterparts at z 1. These sources represent ~55%-60% of the total MIPS 24 μm population with f24 μm 80 μJy, the rest of the sample likely lying at higher redshifts. We then determine an estimate of their total IR luminosities using various libraries of IR spectral energy distributions. We find that the 24 μm population at 0.5 z 1 is dominated by "luminous infrared galaxies" (i.e., 1011 L☉ ≤ LIR ≤ 1012 L☉), the counterparts of which appear to be also luminous at optical wavelengths and tend to be more massive than the majority of optically selected galaxies. A significant number of fainter sources (5 × 1010 L☉ LIR ≤ 1011 L☉) are also detected at similar distances. We finally derive 15 μm and total IR luminosity functions (LFs) up to z ~ 1. In agreement with the previous results from the Infrared Space Observatory (ISO) and SCUBA and as expected from the MIPS source number counts, we find very strong evolution of the contribution of the IR-selected population with look-back time. Pure evolution in density is firmly excluded by the data, but we find considerable degeneracy between strict evolution in luminosity and a combination of increases in both density and luminosity [L ∝ (1 + z), ∝ (1 + z)]. A significant steepening of the faint-end slope of the IR luminosity function is also unlikely, as it would overproduce the faint 24 μm source number counts. Our results imply that the comoving IR energy density of the universe evolves as (1 + z)3.9±0.4 up to z ~ 1 and that galaxies luminous in the infrared (i.e., LIR ≥ 1011 L☉) are responsible for 70% ± 15% of this energy density at z ~ 1. Taking into account the contribution of the UV luminosity evolving as (1 + z)~2.5, we infer that these IR-luminous sources dominate the star-forming activity beyond z ~ 0.7. The uncertainties affecting these conclusions are largely dominated by the errors in the k-corrections used to convert 24 μm fluxes into luminosities.

Journal ArticleDOI
TL;DR: A new graphical user-friendly interface for Multivariate Curve Resolution using Alternating Least Squares has been developed as a freely available MATLAB toolbox.

Journal ArticleDOI
TL;DR: In this article, the authors showed that the decrease in water erosion rates with increasing root mass is also exponential, according to the equation SEP e b RP, where SEP is a soil erosion parameter (e.g., interrill or rill erosion rates relative to erosion rates of bare topsoils without roots), RP is a root parameter, and b is a constant that indicates the effectiveness of the plant roots in reducing soil erosion rates.
Abstract: Vegetation controls soil erosion rates significantly. The decrease of water erosion rates with increasing vegetation cover is exponential. This review reveals that the decrease in water erosion rates with increasing root mass is also exponential, according to the equation SEP e b RP where SEP is a soil erosion parameter (e.g., interrill or rill erosion rates relative to erosion rates of bare topsoils without roots), RP is a root parameter (e.g., root density or root length density) and b is a constant that indicates the effectiveness of the plant roots in reducing soil erosion rates. Whatever rooting parameter is used, for splash erosion b equals zero. For interrill erosion the average b-value is 0.1195 when root density (kg m 3) is used as root parameter, and 0.0022 when root length density (km m 3) is used. For rill erosion these average b-values are 0.5930 and 0.0460, respectively. The similarity of this equation for root effects with the equation for vegetation cover effects is striking, but it is yet...

Journal ArticleDOI
TL;DR: In this paper, the relationship between the mineralogical and microstructural characteristics of activated fly ash mortars and its mechanical properties has been established, and the results of the investigation show that in all cases (whatever the activator used) the main reaction product formed is an alkaline aluminosilicate gel, with low-ordered crystalline structure.

Journal ArticleDOI
TL;DR: In this paper, the results of the Sun in Time multiwavelength program (X-rays to UV) of solar analogs with ages covering 0.1-7 Gyr were reported.
Abstract: We report on the results of the Sun in Time multiwavelength program (X-rays to UV) of solar analogs with ages covering ~0.1-7 Gyr. The chief science goals are to study the solar magnetic dynamo and to determine the radiative and magnetic properties of the Sun during its evolution across the main sequence. The present paper focuses on the latter goal, which has the ultimate purpose of providing the spectral irradiance evolution of solar-type stars to be used in the study and modeling of planetary atmospheres. The results from the Sun in Time program suggest that the coronal X-ray-EUV emissions of the young main-sequence Sun were ~100-1000 times stronger than those of the present Sun. Similarly, the transition region and chromospheric FUV-UV emissions of the young Sun are expected to be 20-60 and 10-20 times stronger, respectively, than at present. When we consider the integrated high-energy emission from 1 to 1200 A, the resulting relationship indicates that about 2.5 Gyr ago the solar high-energy flux was about 2.5 times the present value and about 3.5 Gyr ago was about 6 times the present value (when life supposedly arose on Earth). The strong radiation emissions inferred should have had major influences on the thermal structure, photochemistry, and photoionization of planetary atmospheres and have played an important role in the development of primitive life in the solar system. Some examples of the application of the Sun in Time results on exoplanets and on early solar system planets are discussed.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed a sample of ~2600 MIPS/Spitzer 24mic sources brighter than 80muJy and located in the Chandra Deep Field South to characterize the evolution of the comoving infrared (IR) energy density of the Universe up to z~1.7.
Abstract: We analyze a sample of ~2600 MIPS/Spitzer 24mic sources brighter than ~80muJy and located in the Chandra Deep Field South to characterize the evolution of the comoving infrared (IR) energy density of the Universe up to z~1. Using published ancillary optical data we first obtain a nearly complete redshift determination for the 24mic objects associated with R 10^11 L_IR) are responsible for 70+/-15% of this energy density at z~1. Taking into account the contribution of the UV luminosity evolving as (1+z)^~2.5, we infer that these IR-luminous sources dominate the star-forming activity beyond z~0.7. The uncertainties affecting these conclusions are largely dominated by the errors in the k-corrections used to convert 24mic fluxes into luminosities.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the properties of the jets of 15 active galactic nuclei obtained with the Very Long Baseline Array at 7 mm wavelength at 17 epochs from 1998 March to 2001 April.
Abstract: We present total and polarized intensity images of 15 active galactic nuclei obtained with the Very Long Baseline Array at 7 mm wavelength at 17 epochs from 1998 March to 2001 April. At some epochs the images are accompanied by nearly simultaneous polarization measurements at 3 mm, 1.35/0.85 mm, and optical wavelengths. Here we analyze the 7 mm images to define the properties of the jets of two radio galaxies, five BL Lac objects, and eight quasars on angular scales 0.1 mas. We determine the apparent velocities of 106 features in the jets. For many of the features we derive Doppler factors using a new method based on a comparison of the timescale of decline in flux density with the light-travel time across the emitting region. This allows us to estimate the Lorentz factors (Γ), intrinsic brightness temperatures, and viewing angles of 73 superluminal knots, as well as the opening angle of the jet for each source. The Lorentz factors of the jet flows in the different blazars range from Γ ~ 5 to 40 with the majority of the quasar components having Γ ~ 16–18, while the values in the BL Lac objects are more uniformly distributed. The brightest knots in the quasars have the highest apparent speeds, while the more slowly moving components are pronounced in the BL Lac objects. The quasars in our sample have similar opening angles and marginally smaller viewing angles than the BL Lacs. The two radio galaxies have lower Lorentz factors and wider viewing angles than the blazars. Opening angle and Lorentz factor are inversely proportional, as predicted by gasdynamical models. The brightness temperature drops more abruptly with distance from the core in the BL Lac objects than in the quasars and radio galaxies, perhaps owing to stronger magnetic fields in the former resulting in more severe synchrotron losses of the highest energy electrons. In nine sources we detect statistically meaningful deviations from ballistic motion, with the majority of components accelerating with distance from the core. In six sources we identify jet features with characteristics of trailing shocks that form behind the primary strong perturbations in jet simulations. The apparent speeds of these components increase with distance from the core, suggestive of acceleration of the underlying jet.

Journal ArticleDOI
TL;DR: The ALFALFA project as discussed by the authors uses a two-pass, minimum intrusion, drift scan observing technique that samples the same region of sky at two separate epochs to aid in the discrimination of cosmic signals from noise and terrestrial interference.
Abstract: The recently initiated Arecibo Legacy Fast ALFA (ALFALFA) survey aims to map ~7000 deg2 of the high Galactic latitude sky visible from Arecibo, providing a H I line spectral database covering the redshift range between -1600 and 18,000 km (s-1) with ~5 km s(-1) resolution. Exploiting Arecibo's large collecting area and small beam size, ALFALFA is specifically designed to probe the faint end of the H I mass function in the local universe and will provide a census of H I in the surveyed sky area to faint flux limits, making it especially useful in synergy with wide-area surveys conducted at other wavelengths. ALFALFA will also provide the basis for studies of the dynamics of galaxies within the Local Supercluster and nearby superclusters, allow measurement of the H I diameter function, and enable a first wide-area blind search for local H I tidal features, H I absorbers at z < 0.06, and OH megamasers in the redshift range 0.16 < z < 0.25. Although completion of the survey will require some 5 years, public access to the ALFALFA data and data products will be provided in a timely manner, thus allowing its application for studies beyond those targeted by the ALFALFA collaboration. ALFALFA adopts a two-pass, minimum intrusion, drift scan observing technique that samples the same region of sky at two separate epochs to aid in the discrimination of cosmic signals from noise and terrestrial interference. Survey simulations, which take into account large-scale structure in the mass distribution and incorporate experience with the ALFA system gained from tests conducted during its commissioning phase, suggest that ALFALFA will detect on the order of 20,000 extragalactic H I line sources out to z ~ 0.06, including several hundred with H I masses M(HI) < 10(7.5) M ?.

Journal ArticleDOI
TL;DR: In this article, the effect of three-neutrino flavour oscillations on the decoupling process of neutrinos has been studied by solving the momentum-dependent kinetic equations for the neutrino spectra.

Journal ArticleDOI
TL;DR: In this paper, the authors present Spitzer Space Telescope infrared photometric time series of the transiting extrasolar planet system TrES-1, which represents the first direct detection of photons emitted by a planet orbiting another star.
Abstract: We present Spitzer Space Telescope infrared photometric time series of the transiting extrasolar planet system TrES-1. The data span a predicted time of secondary eclipse, corresponding to the passage of the planet behind the star. In both bands of our observations, we detect a flux decrement with a timing, amplitude, and duration as predicted by published parameters of the system. This signal represents the first direct detection of (i.e. the observation of photons emitted by) a planet orbiting another star. The observed eclipse depths (in units of relative flux) are 0.00066 ± 0.00013 at 4.5 µm and 0.00225±0.00036 at 8.0 µm. These estimates provide the first observational constraints on models of the thermal emission of hot Jupiters. Assuming that the planet emits as a blackbody, we estimate an effective temperature of Tp = 1060 ±50 K. Under the additional assumptions that the planet is in thermal equilibrium with the radiation from the star and emits isotropically, we find a Bond albedo of A = 0.31 ± 0.14. This would imply that the planet absorbs the majority of stellar radiation incident upon it, a conclusion of significant impact to atmospheric models of these objects. We also compare our data to a previously-published model of the planetary thermal emission, which predicts prominent spectral features in our observational bands due to water and carbon monoxide. This model adequately reproduces the observed planet-to-star flux ratio at 8.0 µm, however it significantly over-predicts the ratio at 4.5 µm. We also present an estimate of the timing of the secondary eclipse, which we use to place a

Journal ArticleDOI
31 Mar 2005-Oncogene
TL;DR: RNA interference-mediated downregulation of deltaEF1 in cancer cells was sufficient to derepress E-cadherin expression and restore cell to cell adhesion, suggesting that deltaEF 1 is a key player in late stage carcinogenesis.
Abstract: Downregulation of E-cadherin is a crucial event for epithelial to mesenchymal transition (EMT) in embryonic development and cancer progression. Using the EpFosER mammary tumour model we show that during EMT, upregulation of the transcriptional regulator deltaEF1 coincided with transcriptional repression of E-cadherin. Ectopic expression of deltaEF1 in epithelial cells was sufficient to downregulate E-cadherin and to induce EMT. Analysis of E-cadherin promoter activity and chromatin immunoprecipitation identified deltaEF1 as direct transcriptional repressor of E-cadherin. In human cancer cells, transcript levels of deltaEF1 correlated directly with the extent of E-cadherin repression and loss of the epithelial phenotype. The protein was enriched in nuclei of human cancer cells and physically associated with the E-cadherin promoter. RNA interference-mediated downregulation of deltaEF1 in cancer cells was sufficient to derepress E-cadherin expression and restore cell to cell adhesion, suggesting that deltaEF1 is a key player in late stage carcinogenesis.

Journal ArticleDOI
TL;DR: Results demonstrate a unique function for LP-derived CD103+ MLN DCs in the generation of gut-tropic effector T cells in vitro.
Abstract: Gut-associated lymphoid tissue (GALT) dendritic cells (DCs) display a unique ability to generate CCR9 + α 4 β 7 + gut-tropic CD8 + effector T cells. We demonstrate efficient induction of CCR9 and α 4 β 7 on CD8 + T cells in mesenteric lymph nodes (MLNs) after oral but not intraperitoneal (i.p.) antigen administration indicating differential targeting of DCs via the oral route. In vitro, lamina propria (LP)–derived DCs were more potent than MLN or Peyer's patch DCs in their ability to generate CCR9 + α 4 β 7 + CD8 + T cells. The integrin α chain CD103 ( α E) was expressed on almost all LP DCs, a subset of MLN DCs, but on few splenic DCs. CD103 + MLN DCs were reduced in number in CCR7 − / − mice and, although CD8 + T cells proliferated in the MLNs of CCR7 − / − mice after i.p. but not oral antigen administration, they failed to express CCR9 and had reduced levels of α 4 β 7. Strikingly, although CD103 + and CD103 − MLN DCs were equally potent at inducing CD8 + T cell proliferation and IFN- γ production, only CD103 + DCs were capable of generating gut-tropic CD8 + effector T cells in vitro. Collectively, these results demonstrate a unique function for LP-derived CD103 + MLN DCs in the generation of gut-tropic effector T cells.

Journal ArticleDOI
TL;DR: As the predictions of current theoretical models regarding the relationship between the net outcome of a plant‐plant interaction and abiotic stress do not hold in arid and semi-arid environments, different models are needed.
Abstract: Summary 1 Theoretical models have predicted that the relative importance of facilitation and competition will vary inversely across gradients of abiotic stress, with facilitation being the dominant interaction under high abiotic stress conditions. A critical reappraisal of current theoretical models is needed because experimental studies both support and refute their predictions. 2 A quantitative meta-analysis of field and common garden studies evaluating the effect of abiotic stress (low vs. high) on the net outcome of plant‐plant interactions in arid and semi-arid environments was performed to evaluate the degree of empirical support for these models. We created four separate data sets corresponding to the categories of response variables commonly used to measure plant performance (survival, density, growth and fecundity). 3 The analyses showed that both the selection of the estimator of plant performance and the experimental approach followed have a strong influence on both the net outcome of plant‐plant interactions and the effect of abiotic stress on such outcome. The effect of neighbours on the survival and growth of target plants was not significant at either stress level, but that on the density and fecundity of target plants was positive (facilitation) and negative (competition) at the low and high abiotic stress level, respectively. Density data showed that the net effect of neighbours was positive and negative at low and high abiotic stress levels, respectively, whereas other estimators suggested that the net effect of neighbours did not differ with stress level. None of our meta-analyses indicated that the magnitude of the net effect provided by neighbours, whether positive or negative, was higher under high abiotic stress conditions, and facilitation does not therefore appear to increase in importance with abiotic stress. 4 As the predictions of current theoretical models regarding the relationship between the net outcome of a plant‐plant interaction and abiotic stress do not hold in arid and semi-arid environments, different models are needed. These should consider different sources of abiotic stress separately, and should be valid for performance measurements, such as survival, that integrate plant responses over time. The incorporation of these features into theoretical models will undoubtedly improve their predictive capabilities.