scispace - formally typeset
Search or ask a question
Institution

Spanish National Research Council

GovernmentMadrid, Spain
About: Spanish National Research Council is a government organization based out in Madrid, Spain. It is known for research contribution in the topics: Population & Galaxy. The organization has 79563 authors who have published 220470 publications receiving 7698991 citations. The organization is also known as: CSIC & Consejo Superior de Investigaciones Científicas.
Topics: Population, Galaxy, Catalysis, Stars, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, hospital effluents and urban wastewaters are compared in terms of quali-quantitative characteristics, and an overview of the removal capacity of different treatments is reported.

671 citations

Journal ArticleDOI
TL;DR: In this paper, a long series of carbonation/calcination cycles (up to 500) varying different variables affecting sorbent capacity have been tested in a thermogravimetric apparatus.
Abstract: Calcium oxide can be an effective sorbent to separate CO2 at high temperatures. When coupled with a calcination step to produce pure CO2, the carbonation reaction is the basis for several high-temperature CO2 capture systems. The evolution with cycling of the capture capacity of CaO derived from natural limestones is experimentally investigated in this work. Long series of carbonation/calcination cycles (up to 500) varying different variables affecting sorbent capacity have been tested in a thermogravimetric apparatus. Calcination temperatures above T > 950 °C and very long calcination times accelerate the decay in sorption capacity, while other variables have a comparatively modest effect on the overall sorbent performance. A residual conversion of about 7−8% that remains constant after many hundreds of cycles and that seems insensitive to process conditions has been found. This residual conversion makes very attractive the carbonation/calcination cycle, by reducing (or even eliminating) sorbent purge ra...

670 citations

Journal ArticleDOI
20 Apr 2012-Science
TL;DR: Recent changes in vascular plant species richness observed in a standardized monitoring network across Europe’s major mountain ranges are presented and indicate that high-altitude species, and in particular the rich endemic alpine flora of many Mediterranean mountain ranges, will come under increasing pressure in the predicted warmer and drier climates in this region.
Abstract: In mountainous regions, climate warming is expected to shift species' ranges to higher altitudes. Evidence for such shifts is still mostly from revisitations of historical sites. We present recent (2001 to 2008) changes in vascular plant species richness observed in a standardized monitoring network across Europe's major mountain ranges. Species have moved upslope on average. However, these shifts had opposite effects on the summit floras' species richness in boreal-temperate mountain regions (+3.9 species on average) and Mediterranean mountain regions (-1.4 species), probably because recent climatic trends have decreased the availability of water in the European south. Because Mediterranean mountains are particularly rich in endemic species, a continuation of these trends might shrink the European mountain flora, despite an average increase in summit species richness across the region.

669 citations

Journal ArticleDOI
TL;DR: A review of the use of biochemical properties as indicators of soil quality can be found in this paper, where the authors review the trends in their use over the last decade and present some of the main problems posed by using these properties as quality indicators.
Abstract: Soil biochemical properties are indicators of soil quality, but there is still no consensus as to how they should be used. We review the trends in their use over the last decade. Generally, biochemical properties related to the biocycles of the elements (C, N, P and S) are used to diagnose soil quality. These properties include both general biochemical parameters (i.e. microbial biomass C, dehydrogenase activity and N mineralization potential) and specific biochemical parameters (i.e. the activity of hydrolytic enzymes, such as phosphatase, urease and β-glucosidase). Biochemical properties can be used both individually, as simple indices, or in combination using complex equations derived from mathematical combinations or the application of statistical programs. The results described in the literature for both are contradictory and question the validity of the use of biochemical properties as quality indicators. Complex expressions, in which different properties are combined, are thought to be highly suitable for estimating soil quality, although their use is limited to the area and situation in which they have been described. Generally, the greatest problems posed by the use of biochemical properties as soil quality indicators include the lack of reference values, the contradictory behaviour shown by these properties when a soil is degraded, and the regional variations in expression levels. Most of these problems are derived from the scarce information available on the biochemical properties of soil. For this reason, obtaining soil quality indicators of general use will require a coordinated effort from the international scientific community to standardise the analytical methods and to compile databases of biochemical properties from soils under diverse geographic conditions and with different uses and management.

669 citations

Journal ArticleDOI
17 Jul 2012-PLOS ONE
TL;DR: A range of currently available early warning methods are summarized and applied to two simulated time series that are typical of systems undergoing a critical transition, offering a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data.
Abstract: Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data.

669 citations


Authors

Showing all 79686 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
George Efstathiou187637156228
Peidong Yang183562144351
H. S. Chen1792401178529
David R. Williams1782034138789
Andrea Bocci1722402176461
Adrian L. Harris1701084120365
Gang Chen1673372149819
Gregory J. Hannon165421140456
Alvaro Pascual-Leone16596998251
Jorge E. Cortes1632784124154
Dongyuan Zhao160872106451
John B. Goodenough1511064113741
David D'Enterria1501592116210
A. Gomes1501862113951
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

University of Barcelona
108.5K papers, 3.7M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Padua
114.8K papers, 3.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202371
2022463
202111,933
202012,584
201911,596