scispace - formally typeset
Search or ask a question
Institution

Spanish National Research Council

GovernmentMadrid, Spain
About: Spanish National Research Council is a government organization based out in Madrid, Spain. It is known for research contribution in the topics: Population & Galaxy. The organization has 79563 authors who have published 220470 publications receiving 7698991 citations. The organization is also known as: CSIC & Consejo Superior de Investigaciones Científicas.
Topics: Population, Galaxy, Catalysis, Stars, Star formation


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the main forms of caprine and ovine caseino-macropeptides (CMP), which are the soluble C-terminal derivatives from the action of chymosin on β-casein during the milk clotting process of cheesemaking, have been identified and are a good source of antithrombotic peptides.

1,120 citations

Journal ArticleDOI
TL;DR: In this paper, different factors affecting phenolic-related food quality are reviewed, including internal and environmental factors, technological treatments applied during postharvest storage of fruits and vegetables, as well as processing and storage of the processed products.
Abstract: Phenolic secondary metabolites play an important role in plant-derived food quality, as they affect quality characteristics such as appearance, flavour and health-promoting properties. Their content in foods is affected by many factors that influence phenolic stability, biosynthesis and degradation. In terms of their biosynthesis the key enzyme phenylalanine ammonia-lyase (PAL) is especially relevant, as it can be induced by different stress (environmental) conditions. In addition, polyphenol oxidases (PPO) and peroxidases (POD) are the main enzymes responsible for quality loss due to phenolic degradation. The different factors affecting phenolic-related food quality are reviewed. These include internal (genetic) and environmental (agronomic) factors, technological treatments applied during postharvest storage of fruits and vegetables, as well as processing and storage of the processed products. The different strategies that are required to either maintain or enhance the phenolic-related quality of foods are critically reviewed. Genetic modification designed to decrease polyphenol oxidases or peroxidases is not always a feasible method, owing to side problems related to the growth and defence of the plant. Agronomic treatments can be used to enhance the phenolic content and pigmentation of fruits and vegetables, although the information available on this topic is very scarce and even contradictory. Some postharvest treatments (cold storage, controlled or modified atmospheres, etc) can also improve phenolic-related quality, as well as new processing methods such as irradiation (gamma, UV), high-field electric pulses, high hydrostatic pressures and microwaves. Les composes phenoliques, metabolites secondaires des plantes, jouent un role dans la qualite des fruits, au niveau de l'apparence, de la flaveur et des qualites nutritives. L'enzyme cle de leur biosynthese est la phenylalanine ammonium-lyase, regulee par les facteurs environnementaux. La polyphenol oxydase et la peroxydase sont responsables des degradations donc des pertes de qualite. Les differents facteurs internes (genetiques) et externes (agronomiques) affectant la qualite des produits vegetaux sont etudies. Les differentes mesures envisageables (modification genetique, traitements chimiques ou physiques apres recolte) pour modifier le contenu en compose phenoliques et donc la qualite des produits vegetaux sont etudies.

1,119 citations

Journal ArticleDOI
TL;DR: This paper examined whether biotic interactions exert a dominant role in governing species distributions at macro-ecological scales, and provided tests for two null hypotheses: (H 0 1) "Biotic interactions do not exert a significant role in explaining current distributions of a particular species of butterfly (clouded Apollo, Parnassius mnemosyne ) in Europe; and ( H 0 2) ''Biotic interaction does not influence the prediction of altered species' ranges under climate change''.
Abstract: Aim There is a debate as to whether biotic interactions exert a dominant role in governing species distributions at macroecological scales. The prevailing idea is that climate is the key limiting factor; thus models that use present-day climate‐species range relationships are expected to provide reasonable means to quantify the impacts of climate change on species distributions. However, there is little empirical evidence that biotic interactions would not constrain species distributions at macroecological scales. We examine this idea, for the first time, and provide tests for two null hypotheses: ( H 0 1) ‐ biotic interactions do not exert a significant role in explaining current distributions of a particular species of butterfly (clouded Apollo, Parnassius mnemosyne ) in Europe; and ( H 0 2) ‐ biotic interactions do not exert a significant role in predictions of altered species’ ranges under climate change.

1,115 citations

Journal ArticleDOI
TL;DR: In this paper, an extensive review of the literature concerning estimates of animal-diet Δ13C and Δ15N was conducted to test the effect of diet isotopic ratio on the discrimination factor, taking into account taxa, tissues, environments and lipid extraction treatments.
Abstract: Summary 1The use of stable isotopic techniques to study animal diets and trophic levels requires a priori estimates of discrimination factors (Δ13C and Δ15N, also called fractionation factors), which are the differences in isotopic composition between an animal and its diet. Previous studies have shown that these parameters depend on several sources of variation (e.g. taxon, environment, tissue) but diet as a source of variation still needs assessment. 2We conducted an extensive review of the literature (66 publications) concerning estimates of animal-diet Δ13C (n = 290) and Δ15N (n = 268). We analysed this data set to test the effect of diet isotopic ratio on the discrimination factor, taking into account taxa, tissues, environments and lipid extraction treatments. Our results showed differences among taxonomic classes for Δ13C, but not for Δ15N, and significant differences among tissues for both Δ13C and Δ15N. We found a significant negative relationship between both, Δ13C and Δ15N, with their corresponding diet isotopic ratios. This relationship was found also within taxonomic classes for mammals (Δ13C and Δ15N), birds (Δ13C), fishes (Δ13C and Δ15N) and invertebrates (Δ13C and Δ15N). From these relationships, we propose a method to calculate discrimination factors based on data on diet isotope ratios (termed the ‘Diet-Dependent Discrimination Factor’, DDDF). 3To investigate current practice in the use of discrimination factors, we reviewed studies that used multi-resource isotopic models. More than 60% of models used a discrimination factor coming from a different species or tissues, and in more than 70% of models, only one Δ13C or Δ15N was used for all resources, even if resources had very different isotopic ratios. Also, we estimated DDDFs for the studies that used isotopic models. More than 40% used Δ15N values and more than 33% used Δ13C values differing > 2‰ from estimated DDDFs. 4Synthesis and applications. Over the last decade, applied ecologists have discovered the potential of stable isotopes for animal diet reconstruction, but the successful adoption of the method relies on a good estimation of discrimination factors. We draw attention to the high variability in discrimination factors, advise caution in the use of single discrimination factors in isotopic models, and point to a method for obtaining adequate values for this parameter when discrimination factors cannot be measured experimentally. Future studies should focus on understanding why discrimination factors vary as a function of the isotopic value of the diet.

1,115 citations

Journal ArticleDOI
TL;DR: The extension of the SGH presented here provides specific and testable hypotheses to foster research and helps to reconcile potential discrepancies among previous studies.
Abstract: Summary 1. The stress-gradient hypothesis (SGH) predicts that the frequency of facilitative and competitive interactions will vary inversely across abiotic stress gradients, with facilitation being more common in conditions of high abiotic stress relative to more benign abiotic conditions. With notable exceptions, most tests of the SGH have studied the interaction between a single pair or a few pairs of species, and thus have evaluated shifts in the magnitude and direction of pair-wise interactions along stress gradients, rather than shifts in the general frequency of interactions. 2. The SGH has been supported by numerous studies in many ecosystems, has provided a crucial foundation for studying the interplay between facilitation and competition in plant communities, and has a high heuristic value. However, recent empirical research indicates that factors like the variation among species and the nature of the stress gradient studied add complexity not considered in the SGH, creating an opportunity to extend the SGH’s general conceptual framework. 3. We suggest that one approach for extending the SGH framework is to differentiate between the original idea of how ‘common’ interactions might be along stress gradients and the ubiquitous empirical approach of studying shifts in the strength of pair-wise interactions. Furthermore, by explicitly considering the life history of the interacting species (relative tolerance to stress vs. competitive ability) and the characteristics of the stress factor (resource vs. non-resource) we may be able to greatly refine specific predictions relevant to the SGH. 4. We propose that the general pattern predicted by the SGH would hold more frequently for some combinations of life histories and stress factor, particularly when the benefactor and beneficiary species are mostly competitive and stress-tolerant, respectively. However, we also predict that other combinations are likely to yield different results. For example, the effect of neighbours can be negative at both ends of the stress gradient when both interacting species have similar ‘competitive’ or ‘stress-tolerant’ life histories and the abiotic stress gradient is driven by a resource (e.g. water). 5. Synthesis. The extension of the SGH presented here provides specific and testable hypotheses to foster research and helps to reconcile potential discrepancies among previous studies. It represents an important step in incorporating the complexity and species-specificity of potential outcomes into models and theories addressing how plant‐plant interactions change along stress gradients.

1,110 citations


Authors

Showing all 79686 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
George Efstathiou187637156228
Peidong Yang183562144351
H. S. Chen1792401178529
David R. Williams1782034138789
Andrea Bocci1722402176461
Adrian L. Harris1701084120365
Gang Chen1673372149819
Gregory J. Hannon165421140456
Alvaro Pascual-Leone16596998251
Jorge E. Cortes1632784124154
Dongyuan Zhao160872106451
John B. Goodenough1511064113741
David D'Enterria1501592116210
A. Gomes1501862113951
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

University of Barcelona
108.5K papers, 3.7M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Padua
114.8K papers, 3.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202371
2022463
202111,933
202012,584
201911,596