scispace - formally typeset
Search or ask a question
Institution

Spanish National Research Council

GovernmentMadrid, Spain
About: Spanish National Research Council is a government organization based out in Madrid, Spain. It is known for research contribution in the topics: Population & Galaxy. The organization has 79563 authors who have published 220470 publications receiving 7698991 citations. The organization is also known as: CSIC & Consejo Superior de Investigaciones Científicas.
Topics: Population, Galaxy, Catalysis, Stars, Star formation


Papers
More filters
Journal ArticleDOI
TL;DR: The infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions are described and the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease are discussed.
Abstract: The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease.

970 citations

Journal ArticleDOI
27 Nov 2008-Nature
TL;DR: It is shown that peptidoglycan from Gram-negative bacteria is necessary and sufficient to induce the genesis of ILFs in mice through recognition by the NOD1 (nucleotide-binding oligomerization domain containing 1) innate receptor in epithelial cells, and β-defensin 3- and CCL20-mediated signalling through the chemokine receptor CCR6.
Abstract: Isolated lymphoid follicles (ILFs) are areas of specialized lymphoid tissue found in the lining of the small intestine where they are involved in protecting the host from invading pathogens. A new study of the composition of ILFs and the factors required for their formation has found that they are induced in the mouse small intestine by the presence of peptidoglycan from Gram-negative bacteria via recognition by the NOD1 innate receptor in epithelia cells. ILFs range from clusters of a few B cells to well-organized lymphoid nodules. Once established, the ILFs exert control over the make-up of the bacterial community. This rare example of microbe-induced tissue genesis in mammals demonstrates how a constructive 'dialogue' between bacteria and host can contribute to efficient digestion and protection from intestinal pathogens. The generation of isolated lymphoid follicles is shown to depend on NOD1-induced responses to bacterial components. Isolated lymphoid follicles are in turn are shown to affect the composition of the host microbiota. Intestinal homeostasis is critical for efficient energy extraction from food and protection from pathogens. Its disruption can lead to an array of severe illnesses with major impacts on public health, such as inflammatory bowel disease characterized by self-destructive intestinal immunity. However, the mechanisms regulating the equilibrium between the large bacterial flora and the immune system remain unclear. Intestinal lymphoid tissues generate flora-reactive IgA-producing B cells, and include Peyer's patches and mesenteric lymph nodes, as well as numerous isolated lymphoid follicles (ILFs)1,2. Here we show that peptidoglycan from Gram-negative bacteria is necessary and sufficient to induce the genesis of ILFs in mice through recognition by the NOD1 (nucleotide-binding oligomerization domain containing 1) innate receptor in epithelial cells, and β-defensin 3- and CCL20-mediated signalling through the chemokine receptor CCR6. Maturation of ILFs into large B-cell clusters requires subsequent detection of bacteria by toll-like receptors. In the absence of ILFs, the composition of the intestinal bacterial community is profoundly altered. Our results demonstrate that intestinal bacterial commensals and the immune system communicate through an innate detection system to generate adaptive lymphoid tissues and maintain intestinal homeostasis.

965 citations

Journal ArticleDOI
Heike Rauer1, Heike Rauer2, C. Catala3, Conny Aerts4  +164 moreInstitutions (51)
TL;DR: The PLATO 2.0 mission as discussed by the authors has been selected for ESA's M3 launch opportunity (2022/24) to provide accurate key planet parameters (radius, mass, density and age) in statistical numbers.
Abstract: PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

965 citations

Journal ArticleDOI
TL;DR: The majority of common small-scale polymorphisms as well as many larger insertions and deletions in the A. thaliana pan-genome are described, their effects on gene function, and the patterns of local and global linkage among these variants.
Abstract: The plant Arabidopsis thaliana occurs naturally in many different habitats throughout Eurasia. As a foundation for identifying genetic variation contributing to adaptation to diverse environments, a 1001 Genomes Project to sequence geographically diverse A. thaliana strains has been initiated. Here we present the first phase of this project, based on population-scale sequencing of 80 strains drawn from eight regions throughout the species' native range. We describe the majority of common small-scale polymorphisms as well as many larger insertions and deletions in the A. thaliana pan-genome, their effects on gene function, and the patterns of local and global linkage among these variants. The action of processes other than spontaneous mutation is identified by comparing the spectrum of mutations that have accumulated since A. thaliana diverged from its closest relative 10 million years ago with the spectrum observed in the laboratory. Recent species-wide selective sweeps are rare, and potentially deleterious mutations are more common in marginal populations.

965 citations

Journal ArticleDOI
Bela Abolfathi1, D. S. Aguado2, Gabriela Aguilar3, Carlos Allende Prieto2  +361 moreInstitutions (94)
TL;DR: SDSS-IV is the fourth generation of the Sloan Digital Sky Survey and has been in operation since 2014 July. as discussed by the authors describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14).
Abstract: The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.

965 citations


Authors

Showing all 79686 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
George Efstathiou187637156228
Peidong Yang183562144351
H. S. Chen1792401178529
David R. Williams1782034138789
Andrea Bocci1722402176461
Adrian L. Harris1701084120365
Gang Chen1673372149819
Gregory J. Hannon165421140456
Alvaro Pascual-Leone16596998251
Jorge E. Cortes1632784124154
Dongyuan Zhao160872106451
John B. Goodenough1511064113741
David D'Enterria1501592116210
A. Gomes1501862113951
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

University of Barcelona
108.5K papers, 3.7M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Padua
114.8K papers, 3.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202371
2022463
202111,933
202012,584
201911,596