scispace - formally typeset
Search or ask a question

Showing papers by "St. Jude Children's Research Hospital published in 2011"


Journal ArticleDOI
TL;DR: A molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1, is demonstrated and a signalling mechanism for UlK1 regulation and autophagic induction in response to nutrient signalling is revealed.
Abstract: Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.

5,314 citations


Journal ArticleDOI
TL;DR: The four stages of orderly inflammation mediated by macrophages are discussed: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis.
Abstract: Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing Finally, we briefly discuss the characterization of macrophage heterogeneity in humans

4,182 citations


Journal ArticleDOI
28 Jan 2011-Science
TL;DR: Reconstitution of ULK1-deficient cells with a mutant ULK2 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation.
Abstract: Adenosine monophosphate–activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.

2,137 citations


Journal ArticleDOI
23 Dec 2011-Immunity
TL;DR: Metabolic tracer analysis revealed a Myc-dependent metabolic pathway linking glutaminolysis to the biosynthesis of polyamines, which may represent a general mechanism for metabolic reprogramming under patho-physiological conditions.

1,632 citations


Journal ArticleDOI
TL;DR: HIF1α induction by mTOR represents a metabolic checkpoint for the differentiation of TH17 and Treg cells and is associated with good progenitor cell status in mice.
Abstract: Upon antigen stimulation, the bioenergetic demands of T cells increase dramatically over the resting state. Although a role for the metabolic switch to glycolysis has been suggested to support increased anabolic activities and facilitate T cell growth and proliferation, whether cellular metabolism controls T cell lineage choices remains poorly understood. We report that the glycolytic pathway is actively regulated during the differentiation of inflammatory T H 17 and Foxp3-expressing regulatory T cells (T reg cells) and controls cell fate determination. T H 17 but not T reg cell–inducing conditions resulted in strong up-regulation of the glycolytic activity and induction of glycolytic enzymes. Blocking glycolysis inhibited T H 17 development while promoting T reg cell generation. Moreover, the transcription factor hypoxia-inducible factor 1α (HIF1α) was selectively expressed in T H 17 cells and its induction required signaling through mTOR, a central regulator of cellular metabolism. HIF1α–dependent transcriptional program was important for mediating glycolytic activity, thereby contributing to the lineage choices between T H 17 and T reg cells. Lack of HIF1α resulted in diminished T H 17 development but enhanced T reg cell differentiation and protected mice from autoimmune neuroinflammation. Our studies demonstrate that HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T H 17 and T reg cells.

1,377 citations


Journal ArticleDOI
17 Mar 2011-Nature
TL;DR: It is found that caspase-8 prevents RIPK3-dependent necrosis without inducing apoptosis by functioning in a proteolytically active complex with FLICE-like inhibitory protein long (FLIPL, also known as CFLAR), and this complex is required for the protective function.
Abstract: Caspase-8 mediates apoptosis induced by 'death receptors' on the cell's surface. At the same time, it is able to prevent receptor interacting protein kinase (RIPK)-dependent necrosis. Without caspase-8, mice die during embryonic development, but why this happens is not clear. Two groups show that this lethality is not caused by the absence of apoptosis, but by the RIPK3-dependent necrosis that is unleashed without caspase-8. Mice lacking both caspase-8 and RIP3 develop into viable, immunocompetent adults, but have a progressive lymphoaccumulative disease similar to that in mice that lack the CD95 death receptor. Oberst et al. also show that caspase-8 forms a proteolytically active complex with FLICE-like inhibitory protein long (FLIPL), and that this complex is required for protection against RIP3-dependent necrosis. Caspase-8 mediates apoptosis induced by death receptors. At the same time, this protease is able to prevent RIP-dependent necrosis. Without caspase-8 mice die during their embryonic development. Two papers now show that lethality is not caused by the absence of apoptosis, but by RIP3-dependent necrosis that is unleashed without caspase-8. Mice that lack both caspase-8 and RIP3 develop into viable, immunocompetent, fertile adult mice, but suffer from a progressive lymphoaccumulative disease similar to mice that lack the death receptor CD95. This paper further shows that caspase-8 forms a proteolytically active complex with FLIPL, and that this complex is required for protection against RIP3-dependent necrosis. Caspase-8 has two opposing biological functions—it promotes cell death by triggering the extrinsic pathway of apoptosis, but also has a survival activity, as it is required for embryonic development1, T-lymphocyte activation2, and resistance to necrosis induced by tumour necrosis factor-α (TNF-α) and related family ligands3,4. Here we show that development of caspase-8-deficient mice is completely rescued by ablation of receptor interacting protein kinase-3 (RIPK3). Adult animals lacking both caspase-8 and RIPK3 display a progressive lymphoaccumulative disease resembling that seen with defects in CD95 or CD95-ligand (also known as FAS and FASLG, respectively), and resist the lethal effects of CD95 ligation in vivo. We have found that caspase-8 prevents RIPK3-dependent necrosis without inducing apoptosis by functioning in a proteolytically active complex with FLICE-like inhibitory protein long (FLIPL, also known as CFLAR), and this complex is required for the protective function.

1,061 citations


Journal ArticleDOI
26 Aug 2011-Science
TL;DR: In this paper, a combination of mitochondrial dysfunction and insufficient autophagy may contribute to multiple aging-associated pathologies, which can cause degenerative diseases in which deficient quality control results in inflammation and the death of cell populations.
Abstract: Alterations of mitochondrial functions are linked to multiple degenerative or acute diseases. As mitochondria age in our cells, they become progressively inefficient and potentially toxic, and acute damage can trigger the permeabilization of mitochondrial membranes to initiate apoptosis or necrosis. Moreover, mitochondria have an important role in pro-inflammatory signaling. Autophagic turnover of cellular constituents, be it general or specific for mitochondria (mitophagy), eliminates dysfunctional or damaged mitochondria, thus counteracting degeneration, dampening inflammation, and preventing unwarranted cell loss. Decreased expression of genes that regulate autophagy or mitophagy can cause degenerative diseases in which deficient quality control results in inflammation and the death of cell populations. Thus, a combination of mitochondrial dysfunction and insufficient autophagy may contribute to multiple aging-associated pathologies.

962 citations


Journal ArticleDOI
TL;DR: By combining next-generation sequencing and copy number analysis, it is shown that the DLBCL coding genome contains, on average, more than 30 clonally represented gene alterations per case and novel dysregulated pathways underlying its pathogenesis are identified.
Abstract: Diffuse large B-cell lymphoma (DLBCL) is the most common form of human lymphoma. Although a number of structural alterations have been associated with the pathogenesis of this malignancy, the full spectrum of genetic lesions that are present in the DLBCL genome, and therefore the identity of dysregulated cellular pathways, remains unknown. By combining next-generation sequencing and copy number analysis, we show that the DLBCL coding genome contains, on average, more than 30 clonally represented gene alterations per case. This analysis also revealed mutations in genes not previously implicated in DLBCL pathogenesis, including those regulating chromatin methylation (MLL2; 24% of samples) and immune recognition by T cells. These results provide initial data on the complexity of the DLBCL coding genome and identify novel dysregulated pathways underlying its pathogenesis.

939 citations


Journal ArticleDOI
TL;DR: The slow rate at which pharmacogenetic tests are being adopted in clinical practice is partly due to the lack of specific guidelines on how to adjust medications on the basis of the genetic test results.
Abstract: The slow rate at which pharmacogenetic tests are being adopted in clinical practice is partly due to the lack of specific guidelines on how to adjust medications on the basis of the genetic test results. One of the goals of the Clinical Pharmacogenetics Implementation Consortium (CPIC) of the National Institutes of Health’s Pharmacogenomics Research Network (http://www.pgrn.org) and the Pharmacogenomics Knowledge Base (PharmGKB, http://www.pharmgkb.org) is to provide peer-reviewed, updated, evidence-based, freely accessible guidelines for gene/drug pairs. These guidelines will facilitate the translation of pharmacogenomic knowledge from bench to bedside.

848 citations


Journal ArticleDOI
10 Mar 2011-Nature
TL;DR: The results identify CREBBP/EP300 mutations as a major pathogenetic mechanism shared by common forms of B-cell non-Hodgkin’s lymphoma, with direct implications for the use of drugs targeting acetylation/deacetylation mechanisms.
Abstract: B-cell non-Hodgkin’s lymphoma comprises biologically and clinically distinct diseases the pathogenesis of which is associated with genetic lesions affecting oncogenes and tumour-suppressor genes. We report here that the two most common types—follicular lymphoma and diffuse large B-cell lymphoma—harbour frequent structural alterations inactivating CREBBP and, more rarely, EP300, two highly related histone and non-histone acetyltransferases (HATs) that act as transcriptional co-activators in multiple signalling pathways. Overall, about 39% of diffuse large B-cell lymphoma and 41% of follicular lymphoma cases display genomic deletions and/or somatic mutations that remove or inactivate the HAT coding domain of these two genes. These lesions usually affect one allele, suggesting that reduction in HAT dosage is important for lymphomagenesis. We demonstrate specific defects in acetylation-mediated inactivation of the BCL6 oncoprotein and activation of the p53 tumour suppressor. These results identify CREBBP/EP300 mutations as a major pathogenetic mechanism shared by common forms of B-cell non-Hodgkin’s lymphoma, with direct implications for the use of drugs targeting acetylation/deacetylation mechanisms. In three different subtypes of B-cell lymphomas, two papers report frequent somatic mutations in the genes CREBBP and EP300, which are present in primary tumours or acquired at relapse. These genes encode related acetyltransferases that mainly function to regulate gene expression by acetylating histones and other transcriptional regulators. The mutations disrupt these activities and thus alter chromatin regulation of gene expression, as well as proliferation and potentially the response to anticancer drugs. These studies may provide a rationale for the use of histone deacetylase inhibitors in certain B-cell lymphomas. In three different subtypes of B-cell lymphomas, two papers now report frequent somatic mutations in CREBBP and EP300, present in primary tumours or acquired at relapse. These genes encode related acetyltransferases that mainly function to regulate gene expression by acetylating histones and other transcriptional regulators. The mutations found inactivate these activities and thus alter chromatin regulation of gene expression, as well as proliferation and potentially the response to therapeutic drugs.

843 citations


Journal ArticleDOI
TL;DR: The application of new high-throughput sequencing techniques to define the complete DNA sequence of leukemia and host normal cells and the development of new agents targeted to leukemogenic pathways promise to further improve outcome in the coming decade.
Abstract: Purpose We review recent advances in the biologic understanding and treatment of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), identify therapeutically challenging subgroups, and suggest future directions of research. Methods A review of English literature on childhood acute leukemias from the past 5 years was performed. Results Contemporary treatments have resulted in 5-year event-free survival rates of approximately 80% for childhood ALL and almost 60% for pediatric AML. The advent of high-resolution genome-wide analyses has provided new insights into leukemogenesis and identified many novel subtypes of leukemia. Virtually all ALL and the vast majority of AML cases can be classified according to specific genetic abnormalities. Cooperative mutations involved in cell differentiation, cell cycle regulation, tumor suppression, drug responsiveness, and apoptosis have also been identified in many cases. The development of new formulations of existing drugs, molecularly targete...

Journal ArticleDOI
TL;DR: This review summarizes current strategies for risk assessment, prophylaxis, and therapy in children and adults with hematologic cancers.
Abstract: The tumor lysis syndrome is the most common disease-related emergency in children and adults with hematologic cancers. This review summarizes current strategies for risk assessment, prophylaxis, and therapy.

Journal ArticleDOI
01 Aug 2011-Glia
TL;DR: The factors, pathways, and interactions described in this review provide a new prospective on the cell biology of primary brain tumors, which may ultimately generate new treatment modalities.
Abstract: High-grade brain tumors are heterogeneous with respect to the composition of bona fide tumor cells and with respect to a range of intermingling parenchymal cells. Glioblastomas harbor multiple cell types, some with increased tumorigenicity and stem cell-like capacity. The stem-like cells maybe the cells of origin for tumor relapse. However, the tumor-associated parenchymal cells such as vascular cells,microglia, peripheral immune cells, and neural precursor cells also play a vital role in controlling the course of pathology.In this review, we describe the multiple interactions of bulk glioma cells and glioma stem cells with parenchymal cell populations and highlight the pathological impact as well as signaling pathways known for these types of cell-cell communication. The tumor-vasculature not only nourishes glioblastomas, but also provides a specialized niche for these stem-like cells. In addition, microglial cells,which can contribute up to 30% of a brain tumor mass,play a role in glioblastoma cell invasion. Moreover, non-neoplastic astrocytes can be converted into a reactive phenotype by the glioma microenvironment and can then secrete a number of factors which influences tumor biology. The young brain may have the capacity to inhibit gliomagenesis by the endogenous neural precursor cells, which secrete tumor suppressive factors. The factors, pathways, and interactions described in this review provide a new prospective on the cell biology of primary brain tumors, which may ultimately generate new treatment modalities. However, our picture of the multiple interactions between parenchymal and tumor cells is still incomplete.

Journal ArticleDOI
TL;DR: Despite some drawbacks, membrane-active agents form an important new means of eradicating recalcitrant, non-growing bacteria.
Abstract: Persistent infections involving slow-growing or non-growing bacteria are hard to treat with antibiotics that target biosynthetic processes in growing cells. Consequently, there is a need for antimicrobials that can treat infections containing dormant bacteria. In this Review, we discuss the emerging concept that disrupting the bacterial membrane bilayer or proteins that are integral to membrane function (including membrane potential and energy metabolism) in dormant bacteria is a strategy for treating persistent infections. The clinical applicability of these approaches is exemplified by the efficacy of lipoglycopeptides that damage bacterial membranes and of the diarylquinoline TMC207, which inhibits membrane-bound ATP synthase. Despite some drawbacks, membrane-active agents form an important new means of eradicating recalcitrant, non-growing bacteria.

Journal ArticleDOI
TL;DR: The consequence of phagocytosis of dead cells is strongly affected by those components of the autophagy pathway involved in LAP, and the engagement of LAP upon uptake of apoptotic, necrotic, and RIPK3-dependent nec rotic cells by macrophages is described.
Abstract: The recognition and clearance of dead cells is a process that must occur efficiently to prevent an autoimmune or inflammatory response. Recently, a process was identified wherein the autophagy machinery is recruited to pathogen-containing phagosomes, termed MAPLC3A (LC3)-associated phagocytosis (LAP), which results in optimal degradation of the phagocytosed cargo. Here, we describe the engagement of LAP upon uptake of apoptotic, necrotic, and RIPK3-dependent necrotic cells by macrophages. This process is dependent on some members of the classical autophagy pathway, including Beclin1, ATG5, and ATG7. In contrast, ULK1, despite being required for autophagy, is dispensable for LAP induced by uptake of microbes or dead cells. LAP is required for efficient degradation of the engulfed corpse, and in the absence of LAP, engulfment of dead cells results in increased production of proinflammatory cytokines and decreased production of anti-inflammatory cytokines. LAP is triggered by engagement of the TIM4 receptor by either phosphatidylserine (PtdSer)-displaying dead cells or PtdSer-containing liposomes. Therefore, the consequence of phagocytosis of dead cells is strongly affected by those components of the autophagy pathway involved in LAP.

Journal ArticleDOI
TL;DR: Dosing recommendations for azathioprine, mercaptopurine (MP), and thioguanine based on TPMT genotype are provided and homozygous wild‐type individuals show lower activeThiopurine nucleolides and less myelosuppression.
Abstract: Thiopurine methyltransferase (TPMT) activity exhibits monogenic co-dominant inheritance, with ethnic differences in the frequency of occurrence of variant alleles. With conventional thiopurine doses, homozygous TPMT-deficient patients (~1 in 178 to 1 in 3,736 individuals with two nonfunctional TPMT alleles) experience severe myelosuppression, 30-60% of individuals who are heterozygotes (~3-14% of the population) show moderate toxicity, and homozygous wild-type individuals (~86-97% of the population) show lower active thioguanine nucleolides and less myelosuppression. We provide dosing recommendations (updates at http://www.pharmgkb.org) for azathioprine, mercaptopurine (MP), and thioguanine based on TPMT genotype.

Journal ArticleDOI
10 Mar 2011-Nature
TL;DR: Analysis of an extended cohort of 71 diagnosis–relapse cases and 270 acute leukaemia cases that did not relapse found that 18.3% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase CREB-binding protein (CREBBP).
Abstract: Relapsed acute lymphoblastic leukaemia (ALL) is a leading cause of death due to disease in young people, but the biological determinants of treatment failure remain poorly understood. Recent genome-wide profiling of structural DNA alterations in ALL have identified multiple submicroscopic somatic mutations targeting key cellular pathways, and have demonstrated substantial evolution in genetic alterations from diagnosis to relapse. However, DNA sequence mutations in ALL have not been analysed in detail. To identify novel mutations in relapsed ALL, we resequenced 300 genes in matched diagnosis and relapse samples from 23 patients with ALL. This identified 52 somatic non-synonymous mutations in 32 genes, many of which were novel, including the transcriptional coactivators CREBBP and NCOR1, the transcription factors ERG, SPI1, TCF4 and TCF7L2, components of the Ras signalling pathway, histone genes, genes involved in histone modification (CREBBP and CTCF), and genes previously shown to be targets of recurring DNA copy number alteration in ALL. Analysis of an extended cohort of 71 diagnosis-relapse cases and 270 acute leukaemia cases that did not relapse found that 18.3% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase CREB-binding protein (CREBBP, also known as CBP). The mutations were either present at diagnosis or acquired at relapse, and resulted in truncated alleles or deleterious substitutions in conserved residues of the histone acetyltransferase domain. Functionally, the mutations impaired histone acetylation and transcriptional regulation of CREBBP targets, including glucocorticoid responsive genes. Several mutations acquired at relapse were detected in subclones at diagnosis, suggesting that the mutations may confer resistance to therapy. These results extend the landscape of genetic alterations in leukaemia, and identify mutations targeting transcriptional and epigenetic regulation as a mechanism of resistance in ALL.

Journal ArticleDOI
TL;DR: A unified model of BCL-2 family function is provided that helps to explain otherwise paradoxical observations relating to MOMP, apoptosis, and mitochondrial dynamics.

Journal ArticleDOI
TL;DR: Current features of macrophage polarization are summarized and the roles of variousmacrophage subpopulations and macrophages‐associated genes in health and disease are discussed.
Abstract: Macrophages are now routinely categorized into phenotypic subtypes based on gene expression induced in response to cytokine and pathogen-derived stimulation. In the broadest division, macrophages are described as being CAMs (M1 macrophages) or AAMs (M2 macrophages) based on their exposure to TLR and IFN signals or Th2 cytokines, respectively. Despite the prolific use of this simple classification scheme, little is known about the precise functions of effector molecules produced by AAMs, especially how representative the CAM and AAM subtypes are of tissue macrophages in homeostasis, infection, or tissue repair and how plasticity in gene expression regulates macrophage function in vivo. Furthermore, correlations between mouse and human tissue macrophages and their representative subtypes are lacking and are a major barrier to understanding human immunity. Here, we briefly summarize current features of macrophage polarization and discuss the roles of various macrophage subpopulations and macrophage-associated genes in health and disease.

Journal ArticleDOI
TL;DR: A robust method for detecting SHH, WNT, and non-SHH/WNT molecular subgroups in formalin-fixed medulloblastoma samples is described and the first outcome data based on a clinical trial cohort and novel data on how molecular sub groups are distributed across the range of disease are provided.
Abstract: Medulloblastoma is heterogeneous, being characterized by molecular subgroups that demonstrate distinct gene expression profiles. Activation of the WNT or SHH signaling pathway characterizes two of these molecular subgroups, the former associated with low-risk disease and the latter potentially targeted by novel SHH pathway inhibitors. This manuscript reports the validation of a novel diagnostic immunohistochemical method to distinguish SHH, WNT, and non-SHH/WNT tumors and details their associations with clinical, pathological and cytogenetic variables. A cohort (n = 235) of medulloblastomas from patients aged 0.4–52 years was studied for expression of four immunohistochemical markers: GAB1, β-catenin, filamin A, and YAP1. Immunoreactivity (IR) for GAB1 characterizes only SHH tumors and nuclear IR for β-catenin only WNT tumors. IRs for filamin A and YAP1 identify SHH and WNT tumors. SHH, WNT, and non-SHH/WNT tumors contributed 31, 14, and 55% to the series. All desmoplastic/nodular (D/N) medulloblastomas were SHH tumors, while most WNT tumors (94%) had a classic phenotype. Monosomy 6 was strongly associated with WNT tumors, while PTCH1 loss occurred almost exclusively among SHH tumors. MYC or MYCN amplification and chromosome 17 imbalance occurred predominantly among non-SHH/WNT tumors. Among patients aged 3–16 years and entered onto the SIOP PNET3 trial, outcome was significantly better for children with WNT tumors, when compared to SHH or non-SHH/WNT tumors, which showed similar survival curves. However, high-risk factors (M+ disease, LC/A pathology, MYC amplification) significantly influenced survival in both SHH and non-SHH/WNT groups. We describe a robust method for detecting SHH, WNT, and non-SHH/WNT molecular subgroups in formalin-fixed medulloblastoma samples. In corroborating other studies that indicate the value of combining clinical, pathological, and molecular variables in therapeutic stratification schemes for medulloblastoma, we also provide the first outcome data based on a clinical trial cohort and novel data on how molecular subgroups are distributed across the range of disease.

Journal ArticleDOI
20 Jan 2011-Nature
TL;DR: Using xenografting and DNA copy number alteration (CNA) profiling of human BCR–ABL1 lymphoblastic leukaemia, it is demonstrated that genetic diversity occurs in functionally definedLeukaemia-initiating cells and that many diagnostic patient samples contain multiple genetically distinct leukaemogenesis-in initiating cell subclones.
Abstract: Many tumours are composed of genetically diverse cells; however, little is known about how diversity evolves or the impact that diversity has on functional properties. Here, using xenografting and DNA copy number alteration (CNA) profiling of human BCR-ABL1 lymphoblastic leukaemia, we demonstrate that genetic diversity occurs in functionally defined leukaemia-initiating cells and that many diagnostic patient samples contain multiple genetically distinct leukaemia-initiating cell subclones. Reconstructing the subclonal genetic ancestry of several samples by CNA profiling demonstrated a branching multi-clonal evolution model of leukaemogenesis, rather than linear succession. For some patient samples, the predominant diagnostic clone repopulated xenografts, whereas in others it was outcompeted by minor subclones. Reconstitution with the predominant diagnosis clone was associated with more aggressive growth properties in xenografts, deletion of CDKN2A and CDKN2B, and a trend towards poorer patient outcome. Our findings link clonal diversity with leukaemia-initiating-cell function and underscore the importance of developing therapies that eradicate all intratumoral subclones.

Journal ArticleDOI
TL;DR: It is proposed that IL-10 is linked with the ability of Mtb to evade immune responses and mediate long-term infections in the lung.

Journal ArticleDOI
TL;DR: The current understanding of the role of TRAF3 in TNFR and TLR signalling pathways, and its role in disease is discussed.
Abstract: Tumour necrosis factor receptor (TNFR)-associated factor (TRAF) proteins are essential components of signalling pathways activated by TNFR or Toll-like receptor (TLR) family members. Acting alone or in combination, the seven known TRAFs control many biological processes, including cytokine production and cell survival. The function of one TRAF in particular, TRAF3, remained elusive for many years. Recent work has revealed that TRAF3 is a highly versatile regulator that positively controls type I interferon production, but negatively regulates mitogen-activated protein kinase activation and alternative nuclear factor-κB signalling. In this Review, we discuss our current understanding of the role of TRAF3 in TNFR and TLR signalling pathways, and its role in disease.

Journal ArticleDOI
TL;DR: A critical role is revealed for NLRP12 in maintaining intestinal homeostasis and providing protection against colorectal tumorigenesis in Nlrp12-deficient mice.

Journal ArticleDOI
TL;DR: The existing knowledge concerning astrovirus infections in humans and animals is reviewed, with particular focus on the molecular biology, interspecies transmission and zoonotic potential of this group of viruses.

Journal ArticleDOI
TL;DR: The identification of IRE1α as a key regulator to prevent hepatic steatosis provides novel insights into ER stress mechanisms in fatty liver diseases associated with toxic liver injuries.
Abstract: The endoplasmic reticulum (ER) is the cellular organelle responsible for protein folding and assembly, lipid and sterol biosynthesis, and calcium storage. The unfolded protein response (UPR) is an adaptive intracellular stress response to accumulation of unfolded or misfolded proteins in the ER. In this study, we show that the most conserved UPR sensor inositol-requiring enzyme 1 α (IRE1α), an ER transmembrane protein kinase/endoribonuclease, is required to maintain hepatic lipid homeostasis under ER stress conditions through repressing hepatic lipid accumulation and maintaining lipoprotein secretion. To elucidate physiological roles of IRE1α-mediated signalling in the liver, we generated hepatocyte-specific Ire1α-null mice by utilizing an albumin promoter-controlled Cre recombinase-mediated deletion. Deletion of Ire1α caused defective induction of genes encoding functions in ER-to-Golgi protein transport, oxidative protein folding, and ER-associated degradation (ERAD) of misfolded proteins, and led to selective induction of pro-apoptotic UPR trans-activators. We show that IRE1α is required to maintain the secretion efficiency of selective proteins. In the absence of ER stress, mice with hepatocyte-specific Ire1α deletion displayed modest hepatosteatosis that became profound after induction of ER stress. Further investigation revealed that IRE1α represses expression of key metabolic transcriptional regulators, including CCAAT/enhancer-binding protein (C/EBP) β, C/EBPδ, peroxisome proliferator-activated receptor γ (PPARγ), and enzymes involved in triglyceride biosynthesis. IRE1α was also found to be required for efficient secretion of apolipoproteins upon disruption of ER homeostasis. Consistent with a role for IRE1α in preventing intracellular lipid accumulation, mice with hepatocyte-specific deletion of Ire1α developed severe hepatic steatosis after treatment with an ER stress-inducing anti-cancer drug Bortezomib, upon expression of a misfolding-prone human blood clotting factor VIII, or after partial hepatectomy. The identification of IRE1α as a key regulator to prevent hepatic steatosis provides novel insights into ER stress mechanisms in fatty liver diseases associated with toxic liver injuries.

Journal ArticleDOI
10 Feb 2011-Blood
TL;DR: Excess mortality from second neoplasms and cardiovascular disease vary by sex and persist > 20 years of follow-up in childhood HL survivors in the Childhood Cancer Survivor Study.

Journal ArticleDOI
TL;DR: Investigation of the DNA ligase requirement of chromosomal translocation formation in mouse cells finds the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microHomology and utilizes Lig1.
Abstract: Nonhomologous end-joining (NHEJ) is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4), suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ) pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translocation formation in mouse cells. Mammals have two other DNA ligases, Lig1 and Lig3, in addition to Lig4. As deletion of Lig3 results in cellular lethality due to its requirement in mitochondria, we used recently developed cell lines deficient in nuclear Lig3 but rescued for mitochondrial DNA ligase activity. Further, zinc finger endonucleases were used to generate DNA breaks at endogenous loci to induce translocations. Unlike with Lig4 deficiency, which causes an increase in translocation frequency, translocations are reduced in frequency in the absence of Lig3. Residual translocations in Lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions, unlike either wild-type or Lig4-deficient cells, consistent with the notion that alt-NHEJ is impaired with Lig3 loss. By contrast, Lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. However, translocations are further reduced in Lig3-deficient cells upon Lig1 knockdown, suggesting the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microhomology and utilizes Lig1.


Journal ArticleDOI
TL;DR: Genomic studies suggest that targeted inhibition of receptor tyrosine kinases and RB regulatory proteins may be useful therapies for DIPG.
Abstract: Purpose Long-term survival for children with diffuse intrinsic pontine glioma (DIPG) is less than 10%, and new therapeutic targets are urgently required. We evaluated a large cohort of DIPGs to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG. Patients and Methods Single-nucleotide polymorphism arrays were used to compare the frequencies of genomic copy number abnormalities in 43 DIPGs and eight low-grade brainstem gliomas with data from adult and pediatric (non-DIPG) glioblastomas, and expression profiles were evaluated using gene expression arrays for 27 DIPGs, six low-grade brainstem gliomas, and 66 nonbrainstem low-grade gliomas. Results Frequencies of specific large-scale and focal imbalances varied significantly between DIPGs and nonbrainstem pediatric glioblastomas. Focal amplifications of genes within the receptor tyrosine kinase–Ras–phosphoinositide 3-kinase signaling pathway were found in 47% of DIPGs, the most common of which involved PDGFRA and MET. Thirt...