scispace - formally typeset
Search or ask a question

Showing papers by "St. Jude Children's Research Hospital published in 2016"


Journal ArticleDOI
TL;DR: The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor and is hoped that it will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
Abstract: The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.

11,197 citations


Journal ArticleDOI
TL;DR: The authors identify the challenges and proposed set of minimal reporting guidelines for mouse and human MDSC are a heterogeneous population expanded in cancer and other chronic inflammatory conditions.
Abstract: Myeloid-derived suppressor cells (MDSCs) have emerged as major regulators of immune responses in cancer and other pathological conditions. In recent years, ample evidence supports key contributions of MDSC to tumour progression through both immune-mediated mechanisms and those not directly associated with immune suppression. MDSC are the subject of intensive research with >500 papers published in 2015 alone. However, the phenotypic, morphological and functional heterogeneity of these cells generates confusion in investigation and analysis of their roles in inflammatory responses. The purpose of this communication is to suggest characterization standards in the burgeoning field of MDSC research.

1,869 citations


Journal ArticleDOI
10 Nov 2016-Nature
TL;DR: Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified, and emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking.
Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid-liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.

1,382 citations


Journal ArticleDOI
16 Jun 2016-Cell
TL;DR: It is shown that subcompartments within the nucleolus represent distinct, coexisting liquid phases that may facilitate sequential RNA processing reactions in a variety of RNP bodies, and suggested that phase separation can give rise to multilayered liquids.

1,330 citations


Journal ArticleDOI
TL;DR: An overview of the current state of the field of single-cell genome sequencing is provided, focusing on the technical challenges of making measurements that start from a single molecule of DNA, and how some of these recent methodological advancements have enabled the discovery of unexpected new biology.
Abstract: Single-cell genome sequencing can provide detailed insights into the composition of single genomes that are not readily apparent when studying bulk cell populations. This Review discusses the considerable technical challenges of amplifying and interrogating genomes from single cells, emerging innovative solutions and various applications in microbiology and human disease, in particular in cancer.

1,061 citations


Journal ArticleDOI
TL;DR: Rapidly emerging data with selective inhibitors of CDK4/6 have validated these cell-cycle kinases as anticancer drug targets, corroborating longstanding preclinical predictions.
Abstract: Biochemical and genetic characterization of D-type cyclins, their cyclin D–dependent kinases (CDK4 and CDK6), and the polypeptide CDK4/6 inhibitor p16INK4 over two decades ago revealed how mammalian cells regulate entry into the DNA synthetic (S) phase of the cell-division cycle in a retinoblastoma protein–dependent manner. These investigations provided proof-of-principle that CDK4/6 inhibitors, particularly when combined with coinhibition of allied mitogen-dependent signal transduction pathways, might prove valuable in cancer therapy. FDA approval of the CDK4/6 inhibitor palbociclib used with the aromatase inhibitor letrozole for breast cancer treatment highlights long-sought success. The newest findings herald clinical trials targeting other cancers. Significance: Rapidly emerging data with selective inhibitors of CDK4/6 have validated these cell-cycle kinases as anticancer drug targets, corroborating longstanding preclinical predictions. This review addresses the discovery of these CDKs and their regulators, as well as translation of CDK4/6 biology to positive clinical outcomes and development of rational combinatorial therapies. Cancer Discov; 6(4); 353–67. ©2015 AACR .

682 citations


Journal ArticleDOI
Dominik Sturm1, Dominik Sturm2, Brent A. Orr3, Umut H. Toprak1, Volker Hovestadt1, David T.W. Jones1, David Capper1, David Capper2, Martin Sill1, Ivo Buchhalter1, Paul A. Northcott1, Irina Leis2, Marina Ryzhova, Christian Koelsche1, Christian Koelsche2, Elke Pfaff2, Elke Pfaff1, Sariah Allen3, Gnanaprakash Balasubramanian1, Barbara C. Worst2, Barbara C. Worst1, Kristian W. Pajtler1, Sebastian Brabetz1, Pascal Johann1, Pascal Johann2, Felix Sahm1, Felix Sahm2, Jüri Reimand4, Jüri Reimand5, Alan Mackay6, Diana Carvalho6, Marc Remke5, Joanna J. Phillips7, Arie Perry7, Cynthia Cowdrey7, Rachid Drissi8, Maryam Fouladi8, Felice Giangaspero9, Maria Łastowska10, Wiesława Grajkowska10, Wolfram Scheurlen11, Torsten Pietsch12, Christian Hagel13, Johannes Gojo14, Daniela Lötsch14, Walter Berger14, Irene Slavc14, Christine Haberler14, Anne Jouvet15, Stefan Holm16, Silvia Hofer, Marco Prinz17, Catherine Keohane18, Iris Fried19, Christian Mawrin20, David Scheie21, Bret C. Mobley22, Matthew Schniederjan, Mariarita Santi23, Anna Maria Buccoliero11, Sonika Dahiya24, Christof M. Kramm25, André O. von Bueren25, Katja von Hoff13, Stefan Rutkowski13, Christel Herold-Mende2, Michael C. Frühwald26, Till Milde2, Till Milde1, Martin Hasselblatt27, Pieter Wesseling28, Pieter Wesseling29, Jochen Rößler30, Ulrich Schüller31, Martin Ebinger, Jens Schittenhelm32, Stephan Frank33, Rainer Grobholz, Istvan Vajtai, Volkmar Hans, Reinhard Schneppenheim13, Karel Zitterbart34, V. Peter Collins35, Eleonora Aronica36, Pascale Varlet, Stéphanie Puget37, Christelle Dufour38, Jacques Grill38, Dominique Figarella-Branger39, Marietta Wolter40, Martin U. Schuhmann32, Tarek Shalaby11, Michael A. Grotzer11, Timothy E. Van Meter41, Camelia M. Monoranu42, Jörg Felsberg40, Guido Reifenberger40, Matija Snuderl43, Lynn Ann Forrester43, Jan Koster36, Rogier Versteeg36, Richard Volckmann36, Peter van Sluis36, Stephan Wolf1, Tom Mikkelsen44, Amar Gajjar3, Kenneth Aldape45, Andrew S. Moore46, Michael D. Taylor5, Chris Jones6, Nada Jabado47, Matthias A. Karajannis43, Roland Eils, Matthias Schlesner1, Peter Lichter1, Andreas von Deimling2, Andreas von Deimling1, Stefan M. Pfister1, Stefan M. Pfister2, David W. Ellison3, Andrey Korshunov1, Andrey Korshunov2, Marcel Kool1 
25 Feb 2016-Cell
TL;DR: It is demonstrated that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors.

648 citations


Journal ArticleDOI
TL;DR: This review discusses the functional roles of membrane-less organelles, unifying structural and mechanistic principles that underlie their assembly and disassembly, and established and emerging methods used in structural investigations of membranes-lessorganelles.
Abstract: Inside eukaryotic cells, macromolecules are partitioned into membrane-bounded compartments and, within these, some are further organized into non-membrane-bounded structures termed membrane-less organelles. The latter structures are comprised of heterogeneous mixtures of proteins and nucleic acids and assemble through a phase separation phenomenon similar to polymer condensation. Membrane-less organelles are dynamic structures maintained through multivalent interactions that mediate diverse biological processes, many involved in RNA metabolism. They rapidly exchange components with the cellular milieu and their properties are readily altered in response to environmental cues, often implicating membrane-less organelles in responses to stress signaling. In this review, we discuss: (1) the functional roles of membrane-less organelles, (2) unifying structural and mechanistic principles that underlie their assembly and disassembly, and (3) established and emerging methods used in structural investigations of membrane-less organelles.

556 citations


Journal ArticleDOI
TL;DR: It is discussed here how recent discoveries in these areas have led to a multidimensional concept of macrophage ontogeny, activation and function, and how technical advances facilitate a new roadmap for the isolation and analysis ofmacrophages at high resolution.
Abstract: Macrophages have protective roles in immunity to pathogens, tissue development, homeostasis and repair following damage. Maladaptive immunity and inflammation provoke changes in macrophage function that are causative of disease. Despite a historical wealth of knowledge about macrophages, recent advances have revealed unknown aspects of their development and function. Following development, macrophages are activated by diverse signals. Such tissue microenvironmental signals together with epigenetic changes influence macrophage development, activation and functional diversity, with consequences in disease and homeostasis. We discuss here how recent discoveries in these areas have led to a multidimensional concept of macrophage ontogeny, activation and function. In connection with this, we also discuss how technical advances facilitate a new roadmap for the isolation and analysis of macrophages at high resolution.

538 citations


Journal ArticleDOI
20 Oct 2016-Cell
TL;DR: It is found that arginine-containing DPRs, polyGly-Arg (GR) and polyPro- Arg (PR), interact with RNA-binding proteins and proteins with low complexity sequence domains (LCDs) that often mediate the assembly of membrane-less organelles.

536 citations


Journal ArticleDOI
Haidong Wang1, Timothy M. Wolock1, Austin Carter1, Grant Nguyen1  +497 moreInstitutions (214)
TL;DR: This report provides national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015.

Journal ArticleDOI
TL;DR: The expanding and interconnected roles of caspases that highlight new aspects of this family of cysteine proteases in innate immunity are discussed.
Abstract: Inflammatory and apoptotic caspases are central players in inflammation and apoptosis, respectively. However, recent studies have revealed that these caspases have functions beyond their established roles. In addition to mediating cleavage of the inflammasome-associated cytokines interleukin-1β (IL-1β) and IL-18, inflammatory caspases modulate distinct forms of programmed cell death and coordinate cell-autonomous immunity and other fundamental cellular processes. Certain apoptotic caspases assemble structurally diverse and dynamic complexes that direct inflammasome and interferon responses to fine-tune inflammation. In this Review, we discuss the expanding and interconnected roles of caspases that highlight new aspects of this family of cysteine proteases in innate immunity.

Journal ArticleDOI
TL;DR: The biological processes involved in the activation and regulation of the inflammasome, including secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis are discussed.
Abstract: Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome.

Journal ArticleDOI
TL;DR: It is found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells, which has practical implications for using CRISpr/cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies.
Abstract: The CRISPR-Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy number gain, CRISPR-Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell cycle arrest. By examining single guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR-Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR-Cas9 elicits a gene-independent anti-proliferative cell response. This effect has important practical implications for interpretation of CRISPR-Cas9 screening data and confounds the use of this technology for identification of essential genes in amplified regions.

Journal ArticleDOI
TL;DR: This article provides comprehensive recommendations for prevention of toxicity from HDMTX, along with detailed treatment guidance to mitigate acute kidney injury and subsequent toxicity.
Abstract: High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m2, is used to treat a range of adult and childhood cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI) in 2%-12% of patients. Nephrotoxicity results from crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. AKI and other toxicities of high-dose methotrexate can lead to significant morbidity, treatment delays, and diminished renal function. Risk factors for methotrexate-associated toxicity include a history of renal dysfunction, volume depletion, acidic urine, and drug interactions. Renal toxicity leads to impaired methotrexate clearance and prolonged exposure to toxic concentrations, which further worsen renal function and exacerbate nonrenal adverse events, including myelosuppression, mucositis, dermatologic toxicity, and hepatotoxicity. Serum creatinine, urine output, and serum methotrexate concentration are monitored to assess renal clearance, with concurrent hydration, urinary alkalinization, and leucovorin rescue to prevent and mitigate AKI and subsequent toxicity. When delayed methotrexate excretion or AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase are usually sufficient to allow renal recovery without the need for dialysis. Prompt recognition and effective treatment of AKI and associated toxicities mitigate further toxicity, facilitate renal recovery, and permit patients to receive other chemotherapy or resume HDMTX therapy when additional courses are indicated. Implications for practice High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m2, is used for a range of cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI), attributable to crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. When AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase allow renal recovery without the need for dialysis. This article, based on a review of the current associated literature, provides comprehensive recommendations for prevention of toxicity and, when necessary, detailed treatment guidance to mitigate AKI and subsequent toxicity.

Journal ArticleDOI
Hmwe H Kyu1, Christine Pinho1, Joseph Wagner1, Jonathan C Brown1  +199 moreInstitutions (118)
TL;DR: Understanding the levels and trends of the leading causes of death and disability among children and adolescents is critical to guide investment and inform policies and give guidance to policy makers in countries where more attention is needed.
Abstract: Importance The literature focuses on mortality among children younger than 5 years. Comparable information on nonfatal health outcomes among these children and the fatal and nonfatal burden of diseases and injuries among older children and adolescents is scarce. Objective To determine levels and trends in the fatal and nonfatal burden of diseases and injuries among younger children (aged Evidence Review Data from vital registration, verbal autopsy studies, maternal and child death surveillance, and other sources covering 14 244 site-years (ie, years of cause of death data by geography) from 1980 through 2013 were used to estimate cause-specific mortality. Data from 35 620 epidemiological sources were used to estimate the prevalence of the diseases and sequelae in the GBD 2013 study. Cause-specific mortality for most causes was estimated using the Cause of Death Ensemble Model strategy. For some infectious diseases (eg, HIV infection/AIDS, measles, hepatitis B) where the disease process is complex or the cause of death data were insufficient or unavailable, we used natural history models. For most nonfatal health outcomes, DisMod-MR 2.0, a Bayesian metaregression tool, was used to meta-analyze the epidemiological data to generate prevalence estimates. Findings Of the 7.7 (95% uncertainty interval [UI], 7.4-8.1) million deaths among children and adolescents globally in 2013, 6.28 million occurred among younger children, 0.48 million among older children, and 0.97 million among adolescents. In 2013, the leading causes of death were lower respiratory tract infections among younger children (905 059 deaths; 95% UI, 810 304-998 125), diarrheal diseases among older children (38 325 deaths; 95% UI, 30 365-47 678), and road injuries among adolescents (115 186 deaths; 95% UI, 105 185-124 870). Iron deficiency anemia was the leading cause of years lived with disability among children and adolescents, affecting 619 (95% UI, 618-621) million in 2013. Large between-country variations exist in mortality from leading causes among children and adolescents. Countries with rapid declines in all-cause mortality between 1990 and 2013 also experienced large declines in most leading causes of death, whereas countries with the slowest declines had stagnant or increasing trends in the leading causes of death. In 2013, Nigeria had a 12% global share of deaths from lower respiratory tract infections and a 38% global share of deaths from malaria. India had 33% of the world’s deaths from neonatal encephalopathy. Half of the world’s diarrheal deaths among children and adolescents occurred in just 5 countries: India, Democratic Republic of the Congo, Pakistan, Nigeria, and Ethiopia. Conclusions and Relevance Understanding the levels and trends of the leading causes of death and disability among children and adolescents is critical to guide investment and inform policies. Monitoring these trends over time is also key to understanding where interventions are having an impact. Proven interventions exist to prevent or treat the leading causes of unnecessary death and disability among children and adolescents. The findings presented here show that these are underused and give guidance to policy makers in countries where more attention is needed.

Journal ArticleDOI
TL;DR: The results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.
Abstract: Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro-inflammatory and pro-oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent-associated changes are dependent on mitochondria, particularly the pro-inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC-1β-dependent mitochondrial biogenesis, contributing to aROS-mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.

Journal ArticleDOI
27 May 2016-Science
TL;DR: It is proposed that polymorphisms in susceptibility genes promote disease through defects in “sensing” protective signals from the microbiome, defining a potentially critical gene-environment etiology for IBD.
Abstract: Inflammatory bowel disease (IBD) is associated with risk variants in the human genome and dysbiosis of the gut microbiome, though unifying principles for these findings remain largely undescribed. The human commensal Bacteroides fragilis delivers immunomodulatory molecules to immune cells via secretion of outer membrane vesicles (OMVs). We reveal that OMVs require IBD-associated genes, ATG16L1 and NOD2, to activate a noncanonical autophagy pathway during protection from colitis. ATG16L1-deficient dendritic cells do not induce regulatory T cells (Tregs) to suppress mucosal inflammation. Immune cells from human subjects with a major risk variant in ATG16L1 are defective in Treg responses to OMVs. We propose that polymorphisms in susceptibility genes promote disease through defects in “sensing” protective signals from the microbiome, defining a potentially critical gene-environment etiology for IBD.

Journal ArticleDOI
01 Apr 2016-Science
TL;DR: Current understanding of how programmed necrotic cell death contributes to inflammation is reviewed and the finding that MLKL and GSDMD play roles in necroptosis and pyroptosis raises hopes that the authors are approaching the identification of molecules that exclusively serve these forms of death.
Abstract: Until recently, programmed cell death was conceived of as a single set of molecular pathways. We now know of several distinct sets of death-inducing mechanisms that lead to differing cell-death processes. In one of them--apoptosis--the dying cell affects others minimally. In contrast, programmed necrotic cell death causes release of immunostimulatory intracellular components after cell-membrane rupture. Defining the in vivo relevance of necrotic death is hampered because the molecules initiating it [such as receptor-interacting protein kinase-1 (RIPK1), RIPK3, or caspase-1] also serve other functions. Proteins that participate in late events in two forms of programmed necrosis [mixed lineage kinase domain-like protein (MLKL) in necroptosis and gasdermin-D in pyroptosis] were recently discovered, bringing us closer to identifying molecules that strictly serve in death mediation, thereby providing probes for better assessing its role in inflammation.

Journal ArticleDOI
TL;DR: Three distinct molecular subgroups of ATRTs, associated with differences in demographics, tumor location, and type of SMARCB1 alterations, were identified, leading to the identification of subgroup-specific regulatory networks and potential therapeutic targets.

Journal ArticleDOI
TL;DR: Findings indicate that ZBP1 is an innate immune sensor of IAV and highlight its importance in the pathogenesis of I AV infection.
Abstract: The interferon-inducible protein Z-DNA binding protein 1 (ZBP1, also known as DNA-dependent activator of IFN-regulatory factors (DAI) and DLM-1) was identified as a dsDNA sensor, which instigates innate immune responses. However, this classification has been disputed and whether ZBP1 functions as a pathogen sensor during an infection has remained unknown. Herein, we demonstrated ZBP1-mediated sensing of the influenza A virus (IAV) proteins NP and PB1, triggering cell death and inflammatory responses via the RIPK1-RIPK3-Caspase-8 axis. ZBP1 regulates NLRP3 inflammasome activation as well as induction of apoptosis, necroptosis and pyroptosis in IAV-infected cells. Importantly, ZBP1 deficiency protected mice from mortality during IAV infection owing to reduced inflammatory responses and epithelial damage. Overall, these findings indicate that ZBP1 is an innate immune sensor of IAV and highlight its importance in the pathogenesis of IAV infection.

Journal ArticleDOI
02 Feb 2016-eLife
TL;DR: It is shown that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA), which are found in canonical nucleolar localization signals.
Abstract: Inside cells, machines called ribosomes assemble proteins from building blocks known as amino acids. Cells can alter the numbers of ribosomes they produce to match the cell’s demand for new proteins. For instance, when cells grow they require a lot of new proteins and therefore more ribosomes are produced. However, when cells face harsh conditions that cause stress (e.g. exposure to UV radiation or a harmful chemical) they generally stop growing and therefore need fewer ribosomes. In human and other eukaryotic cells, ribosomes are assembled in a structure called the nucleolus. However, because the nucleolus is not separated from the rest of the cell by a membrane, it was not clear how it is able to accumulate large quantities of the proteins and other molecules needed to make ribosomes. Recent work suggests that the nucleolus is formed through a process referred to as “phase separation” in which the liquid in a particular region of the cell has different physical properties to the liquid surrounding it. This is like how oil and water form separate layers when mixed. A protein called nucleophosmin is found at high levels in the nucleolus where it interacts with many other proteins, including those involved in making ribosomes. Nucleophosmin binds to motifs within these proteins that contain multiple copies of an amino acid called arginine (referred to as R-motifs). Now, Mitrea et al. investigate how nucleophosmin binds to R-motif proteins and whether this is important for assembling the nucleolus. A search for R-motifs in a list of over a hundred proteins known to bind to nucleophosmin showed that the majority of these proteins contained multiple R-motifs. Furthermore, when high levels of nucleophosmin and the R-motif proteins were present, they underwent phase separation. Next, Mitrea et al. examine the changes in how nucleophosmin and a ribosomal protein interact before and after phase separation. The experiments show that many molecules of nucleophosmin bind to each other and that multiple regions in nucleophosmin are able to interact with the R-motifs. Together, these interactions produce large assemblies of proteins that result in the creation of separate liquid layers. Furthermore, the experiments show that R-motif proteins and other molecules needed to make ribosomes can be brought together within the same liquid phase by nucleophosmin. Mitrea et al.’s findings provide the first insights into the role of nucleophosmin in the molecular organisation of the nucleolus. The next challenge is to understand how this organisation promotes the production of ribosomes and helps the cell to respond to stressful situations.

Journal ArticleDOI
TL;DR: Results indicate that a comprehensive pharmacogenetic model integrating NUDT15 variants may inform personalized thiopurine therapy, and patients with defective N UDT15 alleles showed excessive levels of thiopURine active metabolites and toxicity.
Abstract: Jun Yang and colleagues perform targeted sequencing of NUDT15 and identify loss-of-function variants associated with thiopurine intolerance. Functionally, they show that NUDT15 inactivates thiopurine metabolites, providing a mechanism to explain the association between NUDT15 loss-of-function variants and thiopurine toxicity.

Journal ArticleDOI
05 May 2016-Nature
TL;DR: In this paper, the authors describe the consequences of defective LC3-associated phagocytosis in vivo and show that mice lacking any of several components of the LAP pathway show increased serum levels of inflammatory cytokines and autoantibodies, glomerular immune complex deposition, and evidence of kidney damage.
Abstract: Defects in clearance of dying cells have been proposed to underlie the pathogenesis of systemic lupus erythematosus (SLE). Mice lacking molecules associated with dying cell clearance develop SLE-like disease, and phagocytes from patients with SLE often display defective clearance and increased inflammatory cytokine production when exposed to dying cells in vitro. Previously, we and others described a form of noncanonical autophagy known as LC3-associated phagocytosis (LAP), in which phagosomes containing engulfed particles, including dying cells, recruit elements of the autophagy pathway to facilitate maturation of phagosomes and digestion of their contents. Genome-wide association studies have identified polymorphisms in the Atg5 (ref. 8) and possibly Atg7 (ref. 9) genes, involved in both canonical autophagy and LAP, as markers of a predisposition for SLE. Here we describe the consequences of defective LAP in vivo. Mice lacking any of several components of the LAP pathway show increased serum levels of inflammatory cytokines and autoantibodies, glomerular immune complex deposition, and evidence of kidney damage. When dying cells are injected into LAP-deficient mice, they are engulfed but not efficiently degraded and trigger acute elevation of pro-inflammatory cytokines but not anti-inflammatory interleukin (IL)-10. Repeated injection of dying cells into LAP-deficient, but not LAP-sufficient, mice accelerated the development of SLE-like disease, including increased serum levels of autoantibodies. By contrast, mice deficient in genes required for canonical autophagy but not LAP do not display defective dying cell clearance, inflammatory cytokine production, or SLE-like disease, and, like wild-type mice, produce IL-10 in response to dying cells. Therefore, defects in LAP, rather than canonical autophagy, can cause SLE-like phenomena, and may contribute to the pathogenesis of SLE.

Journal ArticleDOI
TL;DR: Refractory patients with MAP2K1- and ARAF-mutant histiocytoses had clinical responses to MEK inhibition and sorafenib, respectively, highlighting the importance of comprehensive genomic analysis of these disorders.
Abstract: Histiocytic neoplasms are clonal, hematopoietic disorders characterized by an accumulation of abnormal, monocyte-derived dendritic cells or macrophages in Langerhans cell histiocytosis (LCH) and non-Langerhans cell histiocytosis (non-LCH), respectively. The discovery of BRAF V600E mutations in approximately 50% of these patients provided the first molecular therapeutic target in histiocytosis. However, recurrent driving mutations in the majority of patients with BRAF V600E–wild-type non-LCH are unknown, and recurrent cooperating mutations in non-MAP kinase pathways are undefined for the histiocytic neoplasms. Through combined whole-exome and transcriptome sequencing, we identified recurrent kinase fusions involving BRAF, ALK , and NTRK1 , as well as recurrent, activating MAP2K1 and ARAF mutations in patients with BRAF V600E–wild-type non-LCH. In addition to MAP kinase pathway lesions, recurrently altered genes involving diverse cellular pathways were identified. Treatment of patients with MAP2K1 - and ARAF -mutated non-LCH using MEK and RAF inhibitors, respectively, resulted in clinical efficacy, demonstrating the importance of detecting and targeting diverse kinase alterations in these disorders. Significance: We provide the first description of kinase fusions in systemic histiocytic neoplasms and activating ARAF and MAP2K1 mutations in non-Langerhans histiocytic neoplasms. Refractory patients with MAP2K1 - and ARAF -mutant histiocytoses had clinical responses to MEK inhibition and sorafenib, respectively, highlighting the importance of comprehensive genomic analysis of these disorders. Cancer Discov; 6(2); 154–65. ©2015 AACR . This article is highlighted in the In This Issue feature, [p. 109][1] [1]: /lookup/volpage/6/109?iss=2

Journal ArticleDOI
TL;DR: It is shown that autophagy is active in Treg cells and supports their lineage stability and survival fitness and Mechanistically, Autophagy deficiency upregulates metabolic regulators mTORC1 and c-Myc and glycolysis, which contribute to defective Treg function.
Abstract: Regulatory T (Treg) cells respond to immune and inflammatory signals to mediate immunosuppression, but how the functional integrity of Treg cells is maintained under activating environments is unclear. Here we show that autophagy is active in Treg cells and supports their lineage stability and survival fitness. Treg cell-specific deletion of Atg7 or Atg5, two essential genes in autophagy, leads to loss of Treg cells, greater tumor resistance and development of inflammatory disorders. Atg7-deficient Treg cells show increased apoptosis and readily lose expression of the transcription factor Foxp3, especially after activation. Mechanistically, autophagy deficiency upregulates metabolic regulators mTORC1 and c-Myc and glycolysis, which contribute to defective Treg function. Therefore, autophagy couples environmental signals and metabolic homeostasis to protect lineage and survival integrity of Treg cells in activating contexts.

Journal ArticleDOI
TL;DR: The phenotype and transcriptional program of a subset of antigen-specific B cells, which are called 'activated B cells' (ABCs), that were distinct from ASCs and were committed to the MBC lineage are defined.
Abstract: Antigen-specific B cells bifurcate into antibody-secreting cells (ASCs) and memory B cells (MBCs) after infection or vaccination. ASCs (plasmablasts) have been extensively studied in humans, but less is known about B cells that become activated but do not differentiate into plasmablasts. Here we have defined the phenotype and transcriptional program of a subset of antigen-specific B cells, which we have called 'activated B cells' (ABCs), that were distinct from ASCs and were committed to the MBC lineage. We detected ABCs in humans after infection with Ebola virus or influenza virus and also after vaccination. By simultaneously analyzing antigen-specific ASCs and ABCs in human blood after vaccination against influenza virus, we investigated the clonal overlap and extent of somatic hypermutation (SHM) in the ASC (effector) and ABC (memory) lineages. Longitudinal tracking of vaccination-induced hemagglutinin (HA)-specific clones revealed no overall increase in SHM over time, which suggested that repeated annual immunization might have limitations in enhancing the quality of influenza-virus-specific antibody.

Journal ArticleDOI
TL;DR: It is demonstrated that the phosphorylation of Ser345 is not required for the interaction between RIPK3 and MLKL in the necrosome, but is essential forMLKL translocation, accumulation in the plasma membrane, and consequent necroptosis.
Abstract: Mixed lineage kinase domain-like pseudokinase (MLKL) mediates necroptosis by translocating to the plasma membrane and inducing its rupture. The activation of MLKL occurs in a multimolecular complex (the 'necrosome'), which is comprised of MLKL, receptor-interacting serine/threonine kinase (RIPK)-3 (RIPK3) and, in some cases, RIPK1. Within this complex, RIPK3 phosphorylates the activation loop of MLKL, promoting conformational changes and allowing the formation of MLKL oligomers, which migrate to the plasma membrane. Previous studies suggested that RIPK3 could phosphorylate the murine MLKL activation loop at Ser345, Ser347 and Thr349. Moreover, substitution of the Ser345 for an aspartic acid creates a constitutively active MLKL, independent of RIPK3 function. Here we examine the role of each of these residues and found that the phosphorylation of Ser345 is critical for RIPK3-mediated necroptosis, Ser347 has a minor accessory role and Thr349 seems to be irrelevant. We generated a specific monoclonal antibody to detect phospho-Ser345 in murine cells. Using this antibody, a series of MLKL mutants and a novel RIPK3 inhibitor, we demonstrate that the phosphorylation of Ser345 is not required for the interaction between RIPK3 and MLKL in the necrosome, but is essential for MLKL translocation, accumulation in the plasma membrane, and consequent necroptosis.

Journal ArticleDOI
TL;DR: A set of classification criteria for MAS complicating systemic JIA is developed and preliminary evidence of its validity is provided, which will potentially improve understanding of MAS in systemic Jia and enhance efforts to discover effective therapies, by ensuring appropriate patient enrollment in studies.
Abstract: To develop criteria for the classification of macrophage activation syndrome (MAS) in patients with systemic juvenile idiopathic arthritis (JIA). A multistep process, based on a combination of expert consensus and analysis of real patient data, was conducted. A panel of 28 experts was first asked to classify 428 patient profiles as having or not having MAS, based on clinical and laboratory features at the time of disease onset. The 428 profiles comprised 161 patients with systemic JIA—associated MAS and 267 patients with a condition that could potentially be confused with MAS (active systemic JIA without evidence of MAS, or systemic infection). Next, the ability of candidate criteria to classify individual patients as having MAS or not having MAS was assessed by evaluating the agreement between the classification yielded using the criteria and the consensus classification of the experts. The final criteria were selected in a consensus conference. Experts achieved consensus on the classification of 391 of the 428 patient profiles (91.4%). A total of 982 candidate criteria were tested statistically. The 37 best-performing criteria and 8 criteria obtained from the literature were evaluated at the consensus conference. During the conference, 82% consensus among experts was reached on the final MAS classification criteria. In validation analyses, these criteria had a sensitivity of 0.73 and a specificity of 0.99. Agreement between the classification (MAS or not MAS) obtained using the criteria and the original diagnosis made by the treating physician was high (κ=0.76). We have developed a set of classification criteria for MAS complicating systemic JIA and provided preliminary evidence of its validity. Use of these criteria will potentially improve understanding of MAS in systemic JIA and enhance efforts to discover effective therapies, by ensuring appropriate patient enrollment in studies.

Journal ArticleDOI
TL;DR: Altered genes in BRAF, FGFR1, or MYB account for most pathogenic alterations in LGNTs, including pilocytic astrocytomas, and alignment of these genetic alterations and cytologic features acrossLGNTs has diagnostic implications.
Abstract: Low-grade neuroepithelial tumors (LGNTs) are diverse CNS tumors presenting in children and young adults, often with a history of epilepsy. While the genetic profiles of common LGNTs, such as the pilocytic astrocytoma and ‘adult-type’ diffuse gliomas, are largely established, those of uncommon LGNTs remain to be defined. In this study, we have used massively parallel sequencing and various targeted molecular genetic approaches to study alterations in 91 LGNTs, mostly from children but including young adult patients. These tumors comprise dysembryoplastic neuroepithelial tumors (DNETs; n = 22), diffuse oligodendroglial tumors (d-OTs; n = 20), diffuse astrocytomas (DAs; n = 17), angiocentric gliomas (n = 15), and gangliogliomas (n = 17). Most LGNTs (84 %) analyzed by whole-genome sequencing (WGS) were characterized by a single driver genetic alteration. Alterations of FGFR1 occurred frequently in LGNTs composed of oligodendrocyte-like cells, being present in 82 % of DNETs and 40 % of d-OTs. In contrast, a MYB-QKI fusion characterized almost all angiocentric gliomas (87 %), and MYB fusion genes were the most common genetic alteration in DAs (41 %). A BRAF:p.V600E mutation was present in 35 % of gangliogliomas and 18 % of DAs. Pathogenic alterations in FGFR1/2/3, BRAF, or MYB/MYBL1 occurred in 78 % of the series. Adult-type d-OTs with an IDH1/2 mutation occurred in four adolescents, the youngest aged 15 years at biopsy. Despite a detailed analysis, novel genetic alterations were limited to two fusion genes, EWSR1-PATZ1 and SLMAP-NTRK2, both in gangliogliomas. Alterations in BRAF, FGFR1, or MYB account for most pathogenic alterations in LGNTs, including pilocytic astrocytomas, and alignment of these genetic alterations and cytologic features across LGNTs has diagnostic implications. Additionally, therapeutic options based upon targeting the effects of these alterations are already in clinical trials.