scispace - formally typeset
Search or ask a question
Institution

St. Jude Children's Research Hospital

HealthcareMemphis, Tennessee, United States
About: St. Jude Children's Research Hospital is a healthcare organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Virus. The organization has 9344 authors who have published 19233 publications receiving 1233399 citations. The organization is also known as: St. Jude Children's Hospital & St. Jude Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Tumors that harbor STAG2 and TP53 mutations have a particularly dismal prognosis with current treatments and require alternative therapies, and novel drugs that target epigenetic regulators may constitute viable therapeutic strategies in a subset of patients with mutations in chromatin modifiers.
Abstract: Ewing sarcoma (ES) is a primary bone tumor initiated by EWSR1-ETS gene fusions. To identify secondary genetic lesions that contribute to tumor progression, we performed whole genome sequencing of 112 ES samples and matched germline DNA. Overall, ES tumors had relatively few single nucleotides variants, indels, structural variants and copy number alterations. Apart from whole chromosome arm copy number changes, the most common somatic mutations were in STAG2 (17%), CDKN2A (12%), TP53 (7%), EZH2, BCOR, ZMYM3 (2.7% each). Strikingly, STAG2 mutations and CDKN2A deletions were mutually exclusive, as confirmed in ES cell lines. In an expanded cohort of 299 patients with clinical data, we discovered that STAG2 and TP53 mutations are often concurrent and are associated with poor outcome. Finally, we detected sub-clonal STAG2-mutations in diagnostic tumors, and expansion of STAG2 immuno-negative cells in relapse as compared to matched diagnostic samples.

406 citations

Journal ArticleDOI
TL;DR: Bvacizumab-mediated VEGF blockade effects alterations in tumor vessel physiology that allow improved delivery and efficacy of chemotherapy, although careful consideration of drug scheduling is required to optimize antitumor activity.
Abstract: Purpose: Dysfunctional tumor vessels can be a significant barrier to effective cancer therapy. However, increasing evidence suggests that vascular endothelial growth factor (VEGF) inhibition can effect transient “normalization” of the tumor vasculature, thereby improving tumor perfusion and, consequently, delivery of systemic chemotherapy. We sought to examine temporal changes in tumor vascular function in response to the anti-VEGF antibody, bevacizumab. Experimental Design: Established orthotopic neuroblastoma xenografts treated with bevacizumab were evaluated at serial time points for treatment-associated changes in intratumoral vascular physiology, penetration of systemically administered chemotherapy, and efficacy of combination therapy. Results: After a single bevacizumab dose, a progressive decrease in tumor microvessel density to Conclusions: Bevacizumab-mediated VEGF blockade effects alterations in tumor vessel physiology that allow improved delivery and efficacy of chemotherapy, although careful consideration of drug scheduling is required to optimize antitumor activity.

404 citations

Journal ArticleDOI
01 Aug 2019-Nature
TL;DR: In this paper, the authors investigated whether the phosphorylation of the C-terminal domain of the RNA polymerase II (PolII) C-interaction subunit regulates the incorporation of Pol II into phase-separated condensates that are associated with transcription initiation and splicing.
Abstract: The synthesis of pre-mRNA by RNA polymerase II (Pol II) involves the formation of a transcription initiation complex, and a transition to an elongation complex1–4. The large subunit of Pol II contains an intrinsically disordered C-terminal domain that is phosphorylated by cyclin-dependent kinases during the transition from initiation to elongation, thus influencing the interaction of the C-terminal domain with different components of the initiation or the RNA-splicing apparatus5,6. Recent observations suggest that this model provides only a partial picture of the effects of phosphorylation of the C-terminal domain7–12. Both the transcription-initiation machinery and the splicing machinery can form phase-separated condensates that contain large numbers of component molecules: hundreds of molecules of Pol II and mediator are concentrated in condensates at super-enhancers7,8, and large numbers of splicing factors are concentrated in nuclear speckles, some of which occur at highly active transcription sites9–12. Here we investigate whether the phosphorylation of the Pol II C-terminal domain regulates the incorporation of Pol II into phase-separated condensates that are associated with transcription initiation and splicing. We find that the hypophosphorylated C-terminal domain of Pol II is incorporated into mediator condensates and that phosphorylation by regulatory cyclin-dependent kinases reduces this incorporation. We also find that the hyperphosphorylated C-terminal domain is preferentially incorporated into condensates that are formed by splicing factors. These results suggest that phosphorylation of the Pol II C-terminal domain drives an exchange from condensates that are involved in transcription initiation to those that are involved in RNA processing, and implicates phosphorylation as a mechanism that regulates condensate preference. RNA polymerase II with a hypophosphorylated C-terminal domain preferentially incorporates into mediator condensates, and with a hyperphosphorylated C-terminal domain into splicing-factor condensates, revealing phosphorylation as a regulatory mechanism in condensate preference.

404 citations

Journal ArticleDOI
18 Nov 2005-Cell
TL;DR: Slug functions downstream of p53 in developing blood cells as a critical switch that prevents their apoptosis by antagonizing the trans-activation of puma by p53.

404 citations

Journal ArticleDOI
TL;DR: The topotecan resistance of cells overexpressingMrp4 and the polarized expression of Mrp4 in the choroid plexus and brain capillary endothelial cells indicate that Mr p4 has a dual role in protecting the brain from cytotoxins and suggest that the therapeutic efficacy of central nervous system-directed drugs that are Mrp3 substrates may be improved by developing Mrp 4 inhibitors.
Abstract: The role of the multidrug resistance protein MRP4/ABCC4 in vivo remains undefined. To explore this role, we generated Mrp4-deficient mice. Unexpectedly, these mice showed enhanced accumulation of the anticancer agent topotecan in brain tissue and cerebrospinal fluid (CSF). Further studies demonstrated that topotecan was an Mrp4 substrate and that cells overexpressing Mrp4 were resistant to its cytotoxic effects. We then used new antibodies to discover that Mrp4 is unique among the anionic ATP-dependent transporters in its dual localization at the basolateral membrane of the choroid plexus epithelium and in the apical membrane of the endothelial cells of the brain capillaries. Microdialysis sampling of ventricular CSF demonstrated that localization of Mrp4 at the choroid epithelium is integral to its function in limiting drug penetration into the CSF. The topotecan resistance of cells overexpressing Mrp4 and the polarized expression of Mrp4 in the choroid plexus and brain capillary endothelial cells indicate that Mrp4 has a dual role in protecting the brain from cytotoxins and suggest that the therapeutic efficacy of central nervous system-directed drugs that are Mrp4 substrates may be improved by developing Mrp4 inhibitors.

404 citations


Authors

Showing all 9410 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
David Baltimore203876162955
John C. Reed190891164382
Joan Massagué189408149951
Stuart H. Orkin186715112182
Douglas R. Green182661145944
Richard K. Wilson173463260000
Todd R. Golub164422201457
Robert G. Webster15884390776
Elaine R. Mardis156485226700
David Cella1561258106402
Rafi Ahmed14663393190
Ching-Hon Pui14580572146
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202333
2022108
20211,277
20201,136
2019965
2018877