scispace - formally typeset
Search or ask a question
Institution

St. Jude Children's Research Hospital

HealthcareMemphis, Tennessee, United States
About: St. Jude Children's Research Hospital is a healthcare organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Virus. The organization has 9344 authors who have published 19233 publications receiving 1233399 citations. The organization is also known as: St. Jude Children's Hospital & St. Jude Hospital.
Topics: Population, Virus, Cancer, Influenza A virus, Leukemia


Papers
More filters
Journal ArticleDOI
01 Jul 1985-Cell
TL;DR: The feline c-fms proto-oncogene product and the CSF-1 receptor are related, and possibly identical, molecules.

1,423 citations

Journal ArticleDOI
09 Feb 1996-Cell
TL;DR: Regarding biological functions, it can be anticipated that in the very near future the phenotypes of mice deficient in the remaining STATs will be described and will thus eliminate further speculation, and it would seem less likely as time goes on that additional family members will emerge.

1,412 citations

Journal ArticleDOI
18 Apr 2002-Nature
TL;DR: The structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF complex suggests that Cul1 may contribute to catalysis through the positioning of the substrate and the ubiquitin-conjugating enzyme, and this model is supported by Cul1 mutations designed to eliminate the rigidity of the scaffold.
Abstract: SCF complexes are the largest family of E3 ubiquitin–protein ligases and mediate the ubiquitination of diverse regulatory and signalling proteins. Here we present the crystal structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF complex, which shows that Cul1 is an elongated protein that consists of a long stalk and a globular domain. The globular domain binds the RING finger protein Rbx1 through an intermolecular β-sheet, forming a two-subunit catalytic core that recruits the ubiquitin-conjugating enzyme. The long stalk, which consists of three repeats of a novel five-helix motif, binds the Skp1–F boxSkp2 protein substrate-recognition complex at its tip. Cul1 serves as a rigid scaffold that organizes the Skp1–F boxSkp2 and Rbx1 subunits, holding them over 100 A apart. The structure suggests that Cul1 may contribute to catalysis through the positioning of the substrate and the ubiquitin-conjugating enzyme, and this model is supported by Cul1 mutations designed to eliminate the rigidity of the scaffold.

1,387 citations

Journal ArticleDOI
10 Nov 2016-Nature
TL;DR: Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified, and emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking.
Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid-liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.

1,382 citations

Journal ArticleDOI
TL;DR: HIF1α induction by mTOR represents a metabolic checkpoint for the differentiation of TH17 and Treg cells and is associated with good progenitor cell status in mice.
Abstract: Upon antigen stimulation, the bioenergetic demands of T cells increase dramatically over the resting state. Although a role for the metabolic switch to glycolysis has been suggested to support increased anabolic activities and facilitate T cell growth and proliferation, whether cellular metabolism controls T cell lineage choices remains poorly understood. We report that the glycolytic pathway is actively regulated during the differentiation of inflammatory T H 17 and Foxp3-expressing regulatory T cells (T reg cells) and controls cell fate determination. T H 17 but not T reg cell–inducing conditions resulted in strong up-regulation of the glycolytic activity and induction of glycolytic enzymes. Blocking glycolysis inhibited T H 17 development while promoting T reg cell generation. Moreover, the transcription factor hypoxia-inducible factor 1α (HIF1α) was selectively expressed in T H 17 cells and its induction required signaling through mTOR, a central regulator of cellular metabolism. HIF1α–dependent transcriptional program was important for mediating glycolytic activity, thereby contributing to the lineage choices between T H 17 and T reg cells. Lack of HIF1α resulted in diminished T H 17 development but enhanced T reg cell differentiation and protected mice from autoimmune neuroinflammation. Our studies demonstrate that HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T H 17 and T reg cells.

1,377 citations


Authors

Showing all 9410 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
David Baltimore203876162955
John C. Reed190891164382
Joan Massagué189408149951
Stuart H. Orkin186715112182
Douglas R. Green182661145944
Richard K. Wilson173463260000
Todd R. Golub164422201457
Robert G. Webster15884390776
Elaine R. Mardis156485226700
David Cella1561258106402
Rafi Ahmed14663393190
Ching-Hon Pui14580572146
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202333
2022108
20211,278
20201,136
2019965
2018877