scispace - formally typeset
Search or ask a question
Institution

St. Jude Children's Research Hospital

HealthcareMemphis, Tennessee, United States
About: St. Jude Children's Research Hospital is a healthcare organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Virus. The organization has 9344 authors who have published 19233 publications receiving 1233399 citations. The organization is also known as: St. Jude Children's Hospital & St. Jude Hospital.


Papers
More filters
Journal ArticleDOI
23 Jun 1983-Nature
TL;DR: It is shown that cultivation of influenza B viruses in eggs selects subpopulations which are antigenically distinct from virus from the same source grown in mammalian cell cultures.
Abstract: Extensive antigenic variability and a capricious epidemiology are characteristics of influenza A and B viruses of man. The haemagglutinin (HA) undergoes frequent and progressive antigenic drift as a result of selection, under immunological pressure, of viruses possessing alterations in the amino acid sequences at specific sites in the molecule1. Here we present evidence for an additional selection mechanism for antigenic variants of influenza virus that depends on differing host cell tropisms of virus subpopulations. These studies were initiated after earlier observations of the occurrence of a marked degree of antigenic variation during passage of laboratory strains of influenza virus in eggs and cell cultures (J.C.J., in preparation). We have now shown that cultivation of influenza B viruses in eggs selects subpopulations which are antigenically distinct from virus from the same source grown in mammalian cell cultures. As antigenic characterization of influenza virus strains for epidemiological purposes2 and for the preparation of influenza vaccines3 conventionally relies on the cultivation of virus in eggs, our findings may have important practical implications for vaccine design and efficacy.

303 citations

Journal ArticleDOI
TL;DR: The mechanisms of efferocytosis are outlined, from the recognition of dying cells through to phagocytic engulfment and homeostatic resolution, and the pathophysiological consequences that can arise when this process is abrogated are highlighted.
Abstract: Multiple modes of cell death have been identified, each with a unique function and each induced in a setting-dependent manner. As billions of cells die during mammalian embryogenesis and daily in adult organisms, clearing dead cells and associated cellular debris is important in physiology. In this Review, we present an overview of the phagocytosis of dead and dying cells, a process known as efferocytosis. Efferocytosis is performed by macrophages and to a lesser extent by other 'professional' phagocytes (such as monocytes and dendritic cells) and 'non-professional' phagocytes, such as epithelial cells. Recent discoveries have shed light on this process and how it functions to maintain tissue homeostasis, tissue repair and organismal health. Here, we outline the mechanisms of efferocytosis, from the recognition of dying cells through to phagocytic engulfment and homeostatic resolution, and highlight the pathophysiological consequences that can arise when this process is abrogated.

303 citations

Journal ArticleDOI
TL;DR: FabB[H333N] was significantly more resistant to both antibiotics than FabB and had an affinity for TLM an order of magnitude less than the wild-type enzyme, illustrating that the two-histidine active site architecture is critical to protein-antibiotic interaction.

303 citations

Journal ArticleDOI
TL;DR: It is shown that IL-4 and IL-13 regulate NO production through depletion of arginine, the substrate of inducible NO synthase (iNOS), which has implications for understanding the physiological regulation of NO production.
Abstract: The cytokines IL-4 and IL-13 inhibit the production of NO from activated macrophages through an unresolved molecular mechanism. We show here that IL-4 and IL-13 regulate NO production through depletion of arginine, the substrate of inducible NO synthase (iNOS). Inhibition of NO production from murine macrophages stimulated with LPS and IFN-gamma by IL-4 or IL-13 was dependent on Stat6, cell density in the cultures, and pretreatment for at least 6 h. IL-4/IL-13 did not interfere with the expression or activity of iNOS but up-regulated arginase I (the liver isoform of arginase) in a Stat6-dependent manner. Addition of exogenous arginine completely restored NO production in IL-4-treated macrophages. Furthermore, impaired killing of the intracellular pathogen Toxoplasma gondii in IL-4-treated macrophages was overcome by supplementing L-arginine. The simple system of regulated substrate competition between arginase and iNOS has implications for understanding the physiological regulation of NO production.

302 citations

Journal ArticleDOI
TL;DR: Results provide what the authors believe to be a new basis for understanding asparaginase resistance in ALL and indicate that MSC niches in the bone marrow can form a safe haven for leukemic cells.
Abstract: Because of their low asparagine synthetase (ASNS) expression and asparagine biosynthesis, acute lymphoblastic leukemia (ALL) cells are exquisitely sensitive to asparagine depletion. Consequently, asparaginase is a major component of ALL therapy, but the mechanisms regulating the susceptibility of leukemic cells to this agent are unclear. In 288 children with ALL, cellular ASNS expression was more likely to be high in T-lineage ALL and low in B-lineage ALL with TEL-AML1 or hyperdiploidy. However, ASNS expression levels in bone marrow-derived mesenchymal cells (MSCs), which form the microenvironment where leukemic cells grow, were on average 20 times higher than those in ALL cells. MSCs protected ALL cells from asparaginase cytotoxicity in coculture experiments. This protective effect correlated with levels of ASNS expression: downregulation by RNA interference decreased the capacity of MSCs to protect ALL cells from asparaginase, whereas enforced ASNS expression conferred enhanced protection. Asparagine secretion by MSCs was directly related to their ASNS expression levels, suggesting a mechanism - increased concentrations of asparagine in the leukemic cell microenvironment - for the protective effects we observed. These results provide what we believe to be a new basis for understanding asparaginase resistance in ALL and indicate that MSC niches in the bone marrow can form a safe haven for leukemic cells.

302 citations


Authors

Showing all 9410 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
David Baltimore203876162955
John C. Reed190891164382
Joan Massagué189408149951
Stuart H. Orkin186715112182
Douglas R. Green182661145944
Richard K. Wilson173463260000
Todd R. Golub164422201457
Robert G. Webster15884390776
Elaine R. Mardis156485226700
David Cella1561258106402
Rafi Ahmed14663393190
Ching-Hon Pui14580572146
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202333
2022108
20211,277
20201,136
2019965
2018877