scispace - formally typeset
Search or ask a question
Institution

St. Jude Children's Research Hospital

HealthcareMemphis, Tennessee, United States
About: St. Jude Children's Research Hospital is a healthcare organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Virus. The organization has 9344 authors who have published 19233 publications receiving 1233399 citations. The organization is also known as: St. Jude Children's Hospital & St. Jude Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that a blood vascular phenotype is the default fate of budding embryonic venous endothelial cells; upon expression of Prox1, these budding cells adopt a lymphatic vasculature phenotype.
Abstract: The process of angiogenesis has been well documented, but little is known about the biology of lymphatic endothelial cells and the molecular mechanisms controlling lymphangiogenesis. The homeobox gene Prox1 is expressed in a subpopulation of endothelial cells that, after budding from veins, gives rise to the mammalian lymphatic system. In Prox1(-)(/-) embryos, this budding becomes arrested at around embryonic day (E)11.5, resulting in embryos without lymphatic vasculature. Unlike the endothelial cells that bud off in E11.5 wild-type embryos, those of Prox1-null embryos did not co-express any lymphatic markers such as VEGFR-3, LYVE-1 or SLC. Instead, the mutant cells appeared to have a blood vascular phenotype, as determined by their expression of laminin and CD34. These results suggest that Prox1 activity is required for both maintenance of the budding of the venous endothelial cells and differentiation toward the lymphatic phenotype. On the basis of our findings, we propose that a blood vascular phenotype is the default fate of budding embryonic venous endothelial cells; upon expression of Prox1, these budding cells adopt a lymphatic vasculature phenotype.

866 citations

Journal ArticleDOI
TL;DR: Card15 deficiency or the presence of a Crohn disease–like Card15 mutation increased Toll-like receptor 2–mediated activation of NF-κB–c-Rel, and TH1 responses were enhanced, suggesting that CARD15 mutations may lead to disease by causing excessive TH 1 responses.
Abstract: The mechanism by which mutations in CARD15, which encodes nucleotide-binding oligomerization domain 2 (NOD2), cause Crohn disease is poorly understood. Because signaling via mutated NOD2 proteins leads to defective activation of the transcription factor NF-κB, one proposal is that mutations cause deficient NF-κB-dependent T helper type 1 (TH1) responses and increased susceptibility to infection. However, this idea is inconsistent with the increased TH1 responses characteristic of Crohn disease. Here we used Card15−/− mice to show that intact NOD2 signaling inhibited Toll-like receptor 2–driven activation of NF-κB, particularly of the NF-κB subunit c-Rel. Moreover, NOD2 deficiency or the presence of a Crohn disease–like Card15 mutation increased Toll-like receptor 2–mediated activation of NF-κB–c-Rel, and TH1 responses were enhanced. Thus, CARD15 mutations may lead to disease by causing excessive TH1 responses.

861 citations

Journal ArticleDOI
19 Sep 2002-Nature
TL;DR: It is shown that targeted deletion of prestin in mice results in loss of outer hair cell electromotility in vitro and a 40–60 dB loss of cochlear sensitivity in vivo, without disruption of mechano-electrical transduction in outer hair cells.
Abstract: Hearing sensitivity in mammals is enhanced by more than 40 dB (that is, 100-fold) by mechanical amplification thought to be generated by one class of cochlear sensory cells, the outer hair cells. In addition to the mechano-electrical transduction required for auditory sensation, mammalian outer hair cells also perform electromechanical transduction, whereby transmembrane voltage drives cellular length changes at audio frequencies in vitro. This electromotility is thought to arise through voltage-gated conformational changes in a membrane protein, and prestin has been proposed as this molecular motor. Here we show that targeted deletion of prestin in mice results in loss of outer hair cell electromotility in vitro and a 40-60 dB loss of cochlear sensitivity in vivo, without disruption of mechano-electrical transduction in outer hair cells. In heterozygotes, electromotility is halved and there is a twofold (about 6 dB) increase in cochlear thresholds. These results suggest that prestin is indeed the motor protein, that there is a simple and direct coupling between electromotility and cochlear amplification, and that there is no need to invoke additional active processes to explain cochlear sensitivity in the mammalian ear.

857 citations

Journal ArticleDOI
TL;DR: It is demonstrated that BIM and PUMA, similar to truncated BID (tBID), directly activate BAX–BAK to release cytochrome c, and a hierarchical regulation of mitochondrion-dependent apoptosis by various BCL-2 subfamilies is established.
Abstract: Although the BCL-2 family constitutes a crucial checkpoint in apoptosis, the intricate interplay between these family members remains elusive. Here, we demonstrate that BIM and PUMA, similar to truncated BID (tBID), directly activate BAX-BAK to release cytochrome c. Conversely, anti-apoptotic BCL-2-BCL-X(L)-MCL-1 sequesters these 'activator' BH3-only molecules into stable complexes, thus preventing the activation of BAX-BAK. Extensive mutagenesis of BAX-BAK indicates that their activity is not kept in check by BCL-2-BCL-X(L)-MCL-1. Anti-apoptotic BCL-2 members are differentially inactivated by the remaining 'inactivator' BH3-only molecules including BAD, NOXA, BMF, BIK/BLK and HRK/DP5. BAD displaces tBID, BIM or PUMA from BCL-2-BCL-X(L) to activate BAX-BAK, whereas NOXA specifically antagonizes MCL-1. Coexpression of BAD and NOXA killed wild-type but not Bax, Bak doubly deficient cells or Puma deficient cells with Bim knockdown, indicating that activator BH3-only molecules function downstream of inactivator BH3-only molecules to activate BAX-BAK. Our data establish a hierarchical regulation of mitochondrion-dependent apoptosis by various BCL-2 subfamilies.

854 citations

Journal ArticleDOI
01 Sep 1987-Nature
TL;DR: The primary structure of human insulin-like growth factor II receptor, predicted from the complementary DNA sequence, reveals a transmembrane receptor molecule with a large extracellular domain made up of fifteen repeat sequences and a small region homologous to the collagen-binding domain of fibronectin.
Abstract: The primary structure of human insulin-like growth factor II receptor, predicted from the complementary DNA sequence, reveals a transmembrane receptor molecule with a large extracellular domain made up of fifteen repeat sequences and a small region homologous to the collagen-binding domain of fibronectin. The structural and biochemical features of the IGF-II receptor appear identical to those of the cation-independent mannose-6-phosphate receptor.

851 citations


Authors

Showing all 9410 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
David Baltimore203876162955
John C. Reed190891164382
Joan Massagué189408149951
Stuart H. Orkin186715112182
Douglas R. Green182661145944
Richard K. Wilson173463260000
Todd R. Golub164422201457
Robert G. Webster15884390776
Elaine R. Mardis156485226700
David Cella1561258106402
Rafi Ahmed14663393190
Ching-Hon Pui14580572146
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202333
2022108
20211,277
20201,136
2019965
2018877