scispace - formally typeset
Search or ask a question
Institution

St. Jude Children's Research Hospital

HealthcareMemphis, Tennessee, United States
About: St. Jude Children's Research Hospital is a healthcare organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Virus. The organization has 9344 authors who have published 19233 publications receiving 1233399 citations. The organization is also known as: St. Jude Children's Hospital & St. Jude Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Results suggest that IL-10 regulates STAT3-dependent pathways that selectively target a broad component of LPS-induced genes at the mRNA level, which is consistent with previous reports on cytokine signaling-3 and IL-1 receptor antagonist.
Abstract: IL-10 regulates inflammation by reducing cytokine and chemokine production from activated macrophages. We performed microarray experiments to identify possible effector molecules of IL-10 and to investigate the global effect of IL-10 on the transcriptional response induced in LPS-activated macrophages. To exclude background effects of endogenous IL-10, macrophages from IL-10-deficient mice were used. IL-10 up-regulated expression of a small number of genes (26 and 37 after 45 min and 3 h, respectively), including newly identified and previously documented targets such as suppressor of cytokine signaling-3 and IL-1 receptor antagonist. However, the activation program triggered by LPS was profoundly affected by IL-10. IL-10 repressed 62 and further increased 15 of 259 LPS-induced genes. For all genes examined, the effects of IL-10 were determined to be STAT3-dependent. These results suggest that IL-10 regulates STAT3-dependent pathways that selectively target a broad component of LPS-induced genes at the mRNA level.

562 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported activating mutations in the Janus kinases JAK1, JAK2, and JAK3 in 20 (10.7%) of 187 BCR-ABL1-negative, high-risk pediatric ALL cases.
Abstract: Pediatric acute lymphoblastic leukemia (ALL) is a heterogeneous disease consisting of distinct clinical and biological subtypes that are characterized by specific chromosomal abnormalities or gene mutations. Mutation of genes encoding tyrosine kinases is uncommon in ALL, with the exception of Philadelphia chromosome-positive ALL, where the t(9,22)(q34;q11) translocation encodes the constitutively active BCR-ABL1 tyrosine kinase. We recently identified a poor prognostic subgroup of pediatric BCR-ABL1-negative ALL patients characterized by deletion of IKZF1 (encoding the lymphoid transcription factor IKAROS) and a gene expression signature similar to BCR-ABL1-positive ALL, raising the possibility of activated tyrosine kinase signaling within this leukemia subtype. Here, we report activating mutations in the Janus kinases JAK1 (n = 3), JAK2 (n = 16), and JAK3 (n = 1) in 20 (10.7%) of 187 BCR-ABL1-negative, high-risk pediatric ALL cases. The JAK1 and JAK2 mutations involved highly conserved residues in the kinase and pseudokinase domains and resulted in constitutive JAK-STAT activation and growth factor independence of Ba/F3-EpoR cells. The presence of JAK mutations was significantly associated with alteration of IKZF1 (70% of all JAK-mutated cases and 87.5% of cases with JAK2 mutations; P = 0.001) and deletion of CDKN2A/B (70% of all JAK-mutated cases and 68.9% of JAK2-mutated cases). The JAK-mutated cases had a gene expression signature similar to BCR-ABL1 pediatric ALL, and they had a poor outcome. These results suggest that inhibition of JAK signaling is a logical target for therapeutic intervention in JAK mutated ALL.

562 citations

Journal ArticleDOI
TL;DR: This ongoing study, which reflects the single most comprehensive body of information ever assembled on childhood and adolescent cancer survivors, provides a dynamic framework and resource to investigate current and future questions about childhood cancer survivors.
Abstract: Survival for childhood cancer has increased dramatically over the last 40 years with 5-year survival rates now approaching 80%. For many diagnostic groups, rapid increases in survival began in the 1970s with the broader introduction of multimodality approaches, often including combination chemotherapy with or without radiation therapy. With this increase in rates of survivorship has come the recognition that survivors are at risk for adverse health and quality-of-life outcomes, with risk being influenced by host-, disease-, and treatment-related factors. In 1994, the US National Cancer Institute funded the Childhood Cancer Survivor Study, a multi-institutional research initiative designed to establish a large and extensively characterized cohort of more than 14,000 5-year survivors of childhood and adolescent cancer diagnosed between 1970 and 1986. This ongoing study, which reflects the single most comprehensive body of information ever assembled on childhood and adolescent cancer survivors, provides a dynamic framework and resource to investigate current and future questions about childhood cancer survivors.

561 citations

Journal ArticleDOI
02 Nov 2006-Nature
TL;DR: It is shown that the tumour surveillance pathway mediated by Arf, MDM2, MDMX and p53 is activated after loss of RB1 during retinogenesis, providing evidence that the p53 pathway is inactivated in retinoblastoma and that this cancer does not originate from intrinsically death-resistant cells as previously thought.
Abstract: Most human tumours have genetic mutations in their Rb and p53 pathways, but retinoblastoma is thought to be an exception. Studies suggest that retinoblastomas, which initiate with mutations in the gene retinoblastoma 1 (RB1), bypass the p53 pathway because they arise from intrinsically death-resistant cells during retinal development. In contrast to this prevailing theory, here we show that the tumour surveillance pathway mediated by Arf, MDM2, MDMX and p53 is activated after loss of RB1 during retinogenesis. RB1-deficient retinoblasts undergo p53-mediated apoptosis and exit the cell cycle. Subsequently, amplification of the MDMX gene and increased expression of MDMX protein are strongly selected for during tumour progression as a mechanism to suppress the p53 response in RB1-deficient retinal cells. Our data provide evidence that the p53 pathway is inactivated in retinoblastoma and that this cancer does not originate from intrinsically death-resistant cells as previously thought. In addition, they support the idea that MDMX is a specific chemotherapeutic target for treating retinoblastoma.

560 citations


Authors

Showing all 9410 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
David Baltimore203876162955
John C. Reed190891164382
Joan Massagué189408149951
Stuart H. Orkin186715112182
Douglas R. Green182661145944
Richard K. Wilson173463260000
Todd R. Golub164422201457
Robert G. Webster15884390776
Elaine R. Mardis156485226700
David Cella1561258106402
Rafi Ahmed14663393190
Ching-Hon Pui14580572146
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202333
2022108
20211,277
20201,136
2019965
2018877