scispace - formally typeset
Search or ask a question
Institution

St. Jude Children's Research Hospital

HealthcareMemphis, Tennessee, United States
About: St. Jude Children's Research Hospital is a healthcare organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Virus. The organization has 9344 authors who have published 19233 publications receiving 1233399 citations. The organization is also known as: St. Jude Children's Hospital & St. Jude Hospital.
Topics: Population, Virus, Cancer, Influenza A virus, Leukemia


Papers
More filters
Journal ArticleDOI
TL;DR: Highly pathogenic H5N1 influenza viruses continue to evolve and increase their geographic and host range.
Abstract: Ongoing outbreaks of H5N1 avian influenza in migratory waterfowl, domestic poultry, and humans in Asia during the summer of 2005 present a continuing, protean pandemic threat. We review the zoonotic source of highly pathogenic H5N1 viruses and their genesis from their natural reservoirs. The acquisition of novel traits, including lethality to waterfowl, ferrets, felids, and humans, indicates an expanding host range. The natural selection of nonpathogenic viruses from heterogeneous subpopulations cocirculating in ducks contributes to the spread of H5N1 in Asia. Transmission of highly pathogenic H5N1 from domestic poultry back to migratory waterfowl in western China has increased the geographic spread. The spread of H5N1 and its likely reintroduction to domestic poultry increase the need for good agricultural vaccines. In fact, the root cause of the continuing H5N1 pandemic threat may be the way the pathogenicity of H5N1 viruses is masked by cocirculating influenza viruses or bad agricultural vaccines.

421 citations

Journal ArticleDOI
27 May 1993-Nature
TL;DR: Three pairs of infant twins with concordant leukaemia who each share unique (clonal) but non-constitutive HRX rearrangements in their leukaemic cells are described, providing evidence that the leukaemogenic event originates in utero and unequivocal support for the intra-placental 'metastasis' hypothesis forLeukaemia concordance in twins.
Abstract: THE majority ( ∼ 75%) of infant acute leukaemias have a reciprocal translocation between chromosome 11q23 and one of several partner chromosomes1. The gene at 1lq23 (named MLL, ALL-1, HRX or HTRX-1; refs 2–6) has been cloned and shares homology with the Drosophila developmental gene trithorax3–5. Rearrangements of this gene (called HRX here) occur in introns and cluster in a region of ∼ 10 kb; individual patients have different breakpoints3–10. Here we describe three pairs of infant twins with concordant leukaemia who each share unique (clonal) but non-constitutive HRX rearrangements in their leukaemic cells, providing evidence that the leukaemogenic event originates in utero and unequivocal support for the intra-placental 'metastasis' hypothesis for leukaemia concordance in twins11.

421 citations

Journal ArticleDOI
01 Apr 2000-Leukemia
TL;DR: There are emerging data that TPMT genotype may influence the risk of secondary malignancies, including brain tumors and acute myelogenous leukemia, and ongoing studies aim to clarify the influence of T PMT on thiopurine efficacy, acute toxicity, and risk for delayed toxicity.
Abstract: Thiopurine methyltransferase (TPMT) catalyses the S-methylation of thiopurines, including 6-mercaptopurine and 6-thioguanine. TPMT activity exhibits genetic polymorphism, with about 1/300 inheriting TPMT deficiency as an autosomal recessive trait. If treated with standard doses of thiopurines, TPMT-deficient patients accumulate excessive thioguanine nucleotides in hematopoietic tissues, leading to severe hematological toxicity that can be fatal. However, TPMT-deficient patients can be successfully treated with a 10- to 15-fold lower dosage of these medications. The molecular basis for altered TPMT activity has been defined, with rapid and inexpensive assays available for the three signature mutations which account for the majority of mutant alleles. TPMT genotype correlates well with in vivo enzyme activity within erythrocytes and leukemic blast cells and is clearly associated with risk of toxicity. The impact of 6-mercaptopurine dose intensity is also being clarified as an important determinate of event-free survival in childhood leukemia. In addition, there are emerging data that TPMT genotype may influence the risk of secondary malignancies, including brain tumors and acute myelogenous leukemia. Ongoing studies aim to clarify the influence of TPMT on thiopurine efficacy, acute toxicity, and risk for delayed toxicity. Together, these advances hold the promise of improving the safety and efficacy of thiopurine therapy.

420 citations

Journal ArticleDOI
TL;DR: Loss of FADD or caspase-8 in a RIP3-deficient background, but not RIP3 deficiency alone, hampered transcriptional priming and posttranslational activation of the canonical and noncanonical Nlrp3 inflammasome.
Abstract: The Nlrp3 inflammasome is critical for host immunity, but the mechanisms controlling its activation are enigmatic. In this study, we show that loss of FADD or caspase-8 in a RIP3-deficient background, but not RIP3 deficiency alone, hampered transcriptional priming and posttranslational activation of the canonical and noncanonical Nlrp3 inflammasome. Deletion of caspase-8 in the presence or absence of RIP3 inhibited caspase-1 and caspase-11 activation by Nlrp3 stimuli but not the Nlrc4 inflammasome. In addition, FADD deletion prevented caspase-8 maturation, positioning FADD upstream of caspase-8. Consequently, FADD- and caspase-8-deficient mice had impaired IL-1β production when challenged with LPS or infected with the enteropathogen Citrobacter rodentium. Thus, our results reveal FADD and caspase-8 as apical mediators of canonical and noncanonical Nlrp3 inflammasome priming and activation.

420 citations

Journal ArticleDOI
10 Oct 2013-Nature
TL;DR: It is shown that H7 viruses probably transferred from domestic duck to chicken populations in China on at least two independent occasions and subsequently reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related previously unrecognized H7n7 lineage.
Abstract: A novel H7N9 influenza A virus first detected in March 2013 has since caused more than 130 human infections in China, resulting in 40 deaths. Preliminary analyses suggest that the virus is a reassortant of H7, N9 and H9N2 avian influenza viruses, and carries some amino acids associated with mammalian receptor binding, raising concerns of a new pandemic. However, neither the source populations of the H7N9 outbreak lineage nor the conditions for its genesis are fully known. Using a combination of active surveillance, screening of virus archives, and evolutionary analyses, here we show that H7 viruses probably transferred from domestic duck to chicken populations in China on at least two independent occasions. We show that the H7 viruses subsequently reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related previously unrecognized H7N7 lineage. The H7N9 outbreak lineage has spread over a large geographic region and is prevalent in chickens at live poultry markets, which are thought to be the immediate source of human infections. Whether the H7N9 outbreak lineage has, or will, become enzootic in China and neighbouring regions requires further investigation. The discovery here of a related H7N7 influenza virus in chickens that has the ability to infect mammals experimentally, suggests that H7 viruses may pose threats beyond the current outbreak. The continuing prevalence of H7 viruses in poultry could lead to the generation of highly pathogenic variants and further sporadic human infections, with a continued risk of the virus acquiring human-to-human transmissibility.

420 citations


Authors

Showing all 9410 results

NameH-indexPapersCitations
Richard A. Flavell2311328205119
David Baltimore203876162955
John C. Reed190891164382
Joan Massagué189408149951
Stuart H. Orkin186715112182
Douglas R. Green182661145944
Richard K. Wilson173463260000
Todd R. Golub164422201457
Robert G. Webster15884390776
Elaine R. Mardis156485226700
David Cella1561258106402
Rafi Ahmed14663393190
Ching-Hon Pui14580572146
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202333
2022108
20211,278
20201,136
2019965
2018877