scispace - formally typeset
Search or ask a question
Institution

State University of New York System

EducationAlbany, New York, United States
About: State University of New York System is a education organization based out in Albany, New York, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 54077 authors who have published 78070 publications receiving 2985160 citations.
Topics: Population, Poison control, RNA, Gene, Receptor


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the history of MCDM and MAUT is discussed and topics are discussed for their continued development and usefulness to management science over the next decade, identifying exciting directions and promising areas for future research.
Abstract: Management science and decision science have grown exponentially since midcentury. Two closely-related fields central to this growth are multiple criteria decision making MCDM and multiattribute utility theory MAUT. This paper comments on the history of MCDM and MAUT and discusses topics we believe are important in their continued development and usefulness to management science over the next decade. Our aim is to identify exciting directions and promising areas for future research.

606 citations

Journal ArticleDOI
TL;DR: The roles of the transition metals in redox catalysts can in broad terms be related to their redox chemistry and to their availability to organisms at the time when the pathways evolved.
Abstract: Iron is the quantitatively most important trace metal involved in thylakoid reactions of all oxygenic organisms since linear (= non-cyclic) electron flow from H2O to NADP+ involves PS II (2–3 Fe), cytochrome b6-f (5 Fe), PS I (12 Fe), and ferredoxin (2 Fe); (replaceable by metal-free flavodoxin in certain cyanobacteria and algae under iron deficiency). Cytochrome c6 (1 Fe) is the only redox catalyst linking the cytochrome b6-f complex to PS I in most algae; in many cyanobacteria and Chlorophyta cytochrome c6 and the copper-containing plastocyanin are alternatives, with the availability of iron and copper regulating their relative expression, while higher plants only have plastocyanin. Iron, copper and zinc occur in enzymes that remove active oxygen species and that are in part bound to the thylakoid membrane. These enzymes are ascorbate peroxidase (Fe) and iron-(cyanobacteria, and most al gae) and copper-zinc- (some algae; higher plants) superoxide dismutase. Iron-containing NAD(P)H-PQ oxidoreductase in thylakoids of cyanobacteria and many eukaryotes may be involved in cyclic electron transport around PS I and in chlororespiration. Manganese is second to iron in its quantitative role in the thylakoids, with four Mn (and 1 Ca) per PS II involved in O2 evolution. The roles of the transition metals in redox catalysts can in broad terms be related to their redox chemistry and to their availability to organisms at the time when the pathways evolved. The quantitative roles of these trace metals varies genotypically (e.g. the greater need for iron in thylakoid reactions of cyanobacteria and rhodophytes than in other O2-evolvers as a result of their lower PS II:PS I ratio) and phenotypically (e.g. as a result of variations in PS II:PS I ratio with the spectral quality of incident radiation).

605 citations

Journal ArticleDOI
TL;DR: It is argued that the two kinds of uncertainty should be propagated through mathematical expressions with different calculation methods, basically, interval analysis should be used to propagate ignorance, and probability theory should beused to propagate variability.

605 citations

Journal ArticleDOI
TL;DR: The overall attributable mortality of ventilator-associated pneumonia is 13%, with higher rates for surgical patients and patients with a mid-range severity score at admission, which is mainly caused by prolonged exposure to the risk of dying due to increased length of ICU stay.
Abstract: Summary Background Estimating attributable mortality of ventilator-associated pneumonia has been hampered by confounding factors, small sample sizes, and the difficulty of doing relevant subgroup analyses. We estimated the attributable mortality using the individual original patient data of published randomised trials of ventilator-associated pneumonia prevention. Methods We identified relevant studies through systematic review. We analysed individual patient data in a one-stage meta-analytical approach (in which we defined attributable mortality as the ratio between the relative risk reductions [RRR] of mortality and ventilator-associated pneumonia) and in competing risk analyses. Predefined subgroups included surgical, trauma, and medical patients, and patients with different categories of severity of illness scores. Findings Individual patient data were available for 6284 patients from 24 trials. The overall attributable mortality was 13%, with higher mortality rates in surgical patients and patients with mid-range severity scores at admission (ie, acute physiology and chronic health evaluation score [APACHE] 20–29 and simplified acute physiology score [SAPS 2] 35–58). Attributable mortality was close to zero in trauma, medical patients, and patients with low or high severity of illness scores. Competing risk analyses could be done for 5162 patients from 19 studies, and the overall daily hazard for intensive care unit (ICU) mortality after ventilator-associated pneumonia was 1·13 (95% CI 0·98–1·31). The overall daily risk of discharge after ventilator-associated pneumonia was 0·74 (0·68–0·80), leading to an overall cumulative risk for dying in the ICU of 2·20 (1·91–2·54). Highest cumulative risks for dying from ventilator-associated pneumonia were noted for surgical patients (2·97, 95% CI 2·24–3·94) and patients with mid-range severity scores at admission (ie, cumulative risks of 2·49 [1·81–3·44] for patients with APACHE scores of 20–29 and 2·72 [1·95–3·78] for those with SAPS 2 scores of 35–58). Interpretation The overall attributable mortality of ventilator-associated pneumonia is 13%, with higher rates for surgical patients and patients with a mid-range severity score at admission. Attributable mortality is mainly caused by prolonged exposure to the risk of dying due to increased length of ICU stay. Funding None.

604 citations

Journal ArticleDOI
18 Mar 1994-Science
TL;DR: The frequency (frq) locus of Neurospora crassa is shown to encode a central component in a molecular feedback loop in which the product of frq negatively regulated its own transcript, which resulted in a daily oscillation in the amount offrq transcript.
Abstract: The frequency (frq) locus of Neurospora crassa was originally identified in searches for loci encoding components of the circadian clock. The frq gene is now shown to encode a central component in a molecular feedback loop in which the product of frq negatively regulated its own transcript, which resulted in a daily oscillation in the amount of frq transcript. Rhythmic messenger RNA expression was essential for overt rhythmicity in the organism and no amount of constitutive expression rescued normal rhythmicity in frq loss-of-function mutants. Step reductions in the amount of FRQ-encoding transcript set the clock to a specific and predicted phase. These results establish frq as encoding a central component in a circadian oscillator.

603 citations


Authors

Showing all 54162 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Bert Vogelstein247757332094
Zhong Lin Wang2452529259003
Peter Libby211932182724
Robert M. Califf1961561167961
Stephen V. Faraone1881427140298
David L. Kaplan1771944146082
David Baker1731226109377
Nora D. Volkow165958107463
David R. Holmes1611624114187
Richard J. Davidson15660291414
Ronald G. Crystal15599086680
Jovan Milosevic1521433106802
James J. Collins15166989476
Mark A. Rubin14569995640
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

University of California, San Diego
204.5K papers, 12.3M citations

97% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202325
2022168
20212,825
20202,891
20192,528
20182,456