scispace - formally typeset
Search or ask a question
Institution

Stevens Institute of Technology

EducationHoboken, New Jersey, United States
About: Stevens Institute of Technology is a education organization based out in Hoboken, New Jersey, United States. It is known for research contribution in the topics: Cognitive radio & Wireless network. The organization has 5440 authors who have published 12684 publications receiving 296875 citations. The organization is also known as: Stevens & Stevens Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present constraints on the annihilation cross section of weakly interacting massive particles dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS.
Abstract: We present constraints on the annihilation cross section of weakly interacting massive particles dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS. These results are derived from an optimized photon weighting statistical technique that improves on standard imaging atmospheric Cherenkov telescope (IACT) analyses by utilizing the spectral and spatial properties of individual photon events. We report on the results of ∼230 hours of observations of five dwarf galaxies and the joint statistical analysis of four of the dwarf galaxies. We find no evidence of gamma-ray emission from any individual dwarf nor in the joint analysis. The derived upper limit on the dark matter annihilation cross section from the joint analysis is 1.35×10-23 cm3 s-1 at 1 TeV for the bottom quark (bb) final state, 2.85×10-24 cm3 s-1 at 1 TeV for the tau lepton (τ+τ-) final state and 1.32×10-25 cm3 s-1 at 1 TeV for the gauge boson (γγ) final state.

114 citations

Journal ArticleDOI
TL;DR: This article explored the antecedent factors that impact new product development team stability as well as its consequences and found that the most direct antecedents of team stability are goal stability and goal support.

114 citations

Journal ArticleDOI
TL;DR: In this paper, a vision-based self-calibration method for a serial robot manipulator, which only requires a ground-truth scale in the reference frame, is proposed.
Abstract: Unlike the traditional robot calibration methods, which need external expensive calibration apparatus and elaborate setups to measure the 3D feature points in the reference frame, a vision-based self-calibration method for a serial robot manipulator, which only requires a ground-truth scale in the reference frame, is proposed in this paper. The proposed algorithm assumes that the camera is rigidly attached to the robot end-effector, which makes it possible to obtain the pose of the manipulator with the pose of the camera. By designing a manipulator movement trajectory, the camera poses can be estimated up to a scale factor at each configuration with the factorization method, where a nonlinear least-square algorithm is applied to improve its robustness. An efficient approach is proposed to estimate this scale factor. The great advantage of this self-calibration method is that only image sequences of a calibration object and a ground-truth length are needed, which makes the robot calibration procedure more autonomous in a dynamic manufacturing environment. Simulations and experimental studies on a PUMA 560 robot reveal the convenience and effectiveness of the proposed robot self-calibration approach.

114 citations

Journal ArticleDOI
TL;DR: In this article, EOFs were used to identify the dominant modes of longshore shoreline variability at Duck, North Carolina, the Gold Coast, Australia, and at several locations within the Columbia River Littoral Cell in the US Pacific Northwest.

114 citations

Journal ArticleDOI
TL;DR: This work defines network resilience along dimensions of reliability, vulnerability, survivability, and recoverable, and quantifies network resilience as a function of component and network performance, and provides a case study analyzing and planning for the resilience of commodity flows along the Mississippi River Navigation System.
Abstract: Given the ubiquitous nature of infrastructure networks in today's society, there is a global need to understand, quantify, and plan for the resilience of these networks to disruptions. This work defines network resilience along dimensions of reliability, vulnerability, survivability, and recoverability, and quantifies network resilience as a function of component and network performance. The treatment of vulnerability and recoverability as random variables leads to stochastic measures of resilience, including time to total system restoration, time to full system service resilience, and time to a specific α% resilience. Ultimately, a means to optimize network resilience strategies is discussed, primarily through an adaption of the Copeland Score for nonparametric stochastic ranking. The measures of resilience and optimization techniques are applied to inland waterway networks, an important mode in the larger multimodal transportation network upon which we rely for the flow of commodities. We provide a case study analyzing and planning for the resilience of commodity flows along the Mississippi River Navigation System to illustrate the usefulness of the proposed metrics.

114 citations


Authors

Showing all 5536 results

NameH-indexPapersCitations
Paul M. Thompson1832271146736
Roger Jones138998114061
Georgios B. Giannakis137132173517
Li-Jun Wan11363952128
Joel L. Lebowitz10175439713
David Smith10099442271
Derong Liu7760819399
Robert R. Clancy7729318882
Karl H. Schoenbach7549419923
Robert M. Gray7537139221
Jin Yu7448032123
Sheng Chen7168827847
Hui Wu7134719666
Amir H. Gandomi6737522192
Haibo He6648222370
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

University of Maryland, College Park
155.9K papers, 7.2M citations

91% related

Purdue University
163.5K papers, 5.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202342
2022139
2021765
2020820
2019799
2018563