scispace - formally typeset
Search or ask a question
Institution

Stevens Institute of Technology

EducationHoboken, New Jersey, United States
About: Stevens Institute of Technology is a education organization based out in Hoboken, New Jersey, United States. It is known for research contribution in the topics: Cognitive radio & Wireless network. The organization has 5440 authors who have published 12684 publications receiving 296875 citations. The organization is also known as: Stevens & Stevens Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a closed-loop low-temperature wind tunnel was used to investigate the ice-phobic properties of superhydrophobic surfaces under dynamic flow conditions using nano-structured hydrophobic particles.
Abstract: In this paper, the icephobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions using a closed-loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating aluminum and steel substrate plates with nano-structured hydrophobic particles. The superhydrophobic plates, along with uncoated controls, were exposed to a wind tunnel air flow of 12 m/s and −7 °C with deviations of ±1 m/s and ±2.5 °C, respectively, containing micrometer-sized (∼50 μm in diameter) water droplets. The ice formation and accretion were observed by CCD cameras. Results show that the superhydrophobic coatings significantly delay ice formation and accretion even under the dynamic flow condition of highly energetic impingement of accelerated supercooled water droplets. It is found that there is a time scale for this phenomenon (delay in ice formation) which has a clear correlation with contact angle hysteresis and the length scale of the surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finest surface roughness. The results suggest that the key for designing icephobic surfaces under the hydrodynamic pressure of impinging droplets is to retain a non-wetting superhydrophobic state with low contact angle hysteresis, rather than to only have a high apparent contact angle (conventionally referred to as a “static” contact angle).

104 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed an approximation to the conventional mixed linear-plus-quadratic ship roll damping model so that analytical obstacles could be overcome in the application of the functional series expansion to non-linear ship rolling.
Abstract: : The objective of the present work was to develop an approximation to the conventional mixed linear-plus-quadratic ship roll damping model so that analytical obstacles could be overcome in the application of the functional series expansion to non-linear ship rolling. A mixed linear-plus-cubic approximation was found to be reasonable for this purpose. In the course of analyses there were indications that this model may be more generally valid than had initially been thought. (Author)

104 citations

Journal ArticleDOI
TL;DR: In this paper, a hydrogen peroxide was safely produced by direct combination of hydrogen and oxygen in a micro-reactor in the explosive regime, and the reaction was shown to be free of mass transfer limitations at the conditions of kinetic experiments.

104 citations

Posted Content
TL;DR: Information Systems Working Papers Series is a series of papers by scientists and engineers looking at the challenges and opportunities in the rapidly changing environment and some of the approaches to solving these problems.
Abstract: Information Systems Working Papers Series

104 citations

Journal ArticleDOI
TL;DR: In this article, the effects of the type of the antisolvent and the presence of multiwalled carbon nanotubes (MWNTs) on membrane morphology and the crystal structure developed within the membranes were investigated by wide angle X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC).
Abstract: Microporous polyvinylidene fluoride (PVDF) and PVDF nanocomposite membranes were prepared via an isothermal immersion precipitation method using two different antisolvents (ethanol and water). The structure and morphology of the resulting membranes were investigated by wide angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The effects of the type of the antisolvent and the presence of multiwalled carbon nanotubes (MWNTs) on membrane morphology and the crystal structure developed within the membranes were studied. The crystallization of the PVDF upon immersion precipitation occurred predominantly in the α-phase when water is used as the antisolvent or in the absence of the carbon nanotubes. On the other hand, β-phase crystallization of the PVDF was promoted upon the use of ethanol as the antisolvent in conjunction with the incorporation of the MWNTs. The morphology and the total crystallinity of the PVDF membranes were also affected by the incorporation of the MWNTs and the antisolvent used, suggesting that the microstructure and the ultimate properties of the PVDF membranes can be engineered upon the judicious selection of crystallization conditions and the use of carbon nanotubes.

104 citations


Authors

Showing all 5536 results

NameH-indexPapersCitations
Paul M. Thompson1832271146736
Roger Jones138998114061
Georgios B. Giannakis137132173517
Li-Jun Wan11363952128
Joel L. Lebowitz10175439713
David Smith10099442271
Derong Liu7760819399
Robert R. Clancy7729318882
Karl H. Schoenbach7549419923
Robert M. Gray7537139221
Jin Yu7448032123
Sheng Chen7168827847
Hui Wu7134719666
Amir H. Gandomi6737522192
Haibo He6648222370
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

University of Maryland, College Park
155.9K papers, 7.2M citations

91% related

Purdue University
163.5K papers, 5.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202342
2022139
2021765
2020820
2019799
2018563