scispace - formally typeset
Search or ask a question
Institution

Stevens Institute of Technology

EducationHoboken, New Jersey, United States
About: Stevens Institute of Technology is a education organization based out in Hoboken, New Jersey, United States. It is known for research contribution in the topics: Computer science & Cognitive radio. The organization has 5440 authors who have published 12684 publications receiving 296875 citations. The organization is also known as: Stevens & Stevens Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the burgeoning literature dedicated to Energy Economics/Finance applications of ML suggests that Support Vector Machine, Artificial Neural Network, and Genetic Algorithms are among the most popular techniques used in energy economics papers.

220 citations

Journal ArticleDOI
TL;DR: The concept of a p-efficient point of a probability distribution is used to derive various equivalent problem formulations and the concept of r-concave discrete probability distributions is introduced.
Abstract: We consider stochastic programming problems with probabilistic constraints involving integer-valued random variables. The concept of a p-efficient point of a probability distribution is used to derive various equivalent problem formulations. Next we introduce the concept of r-concave discrete probability distributions and analyse its relevance for problems under consideration. These notions are used to derive lower and upper bounds for the optimal value of probabilistically constrained stochastic programming problems with discrete random variables. The results are illustrated with numerical examples.

219 citations

Journal ArticleDOI
TL;DR: This paper introduces the concept of wireless aware joint scheduling and computation offloading (JSCO) for multi-component applications, where an optimal decision is made on which components need to be offloaded as well as the scheduling order of these components.
Abstract: Cloud offloading is an indispensable solution to supporting computationally demanding applications on resource constrained mobile devices. In this paper, we introduce the concept of wireless aware joint scheduling and computation offloading (JSCO) for multi-component applications, where an optimal decision is made on which components need to be offloaded as well as the scheduling order of these components. The JSCO approach allows for more degrees of freedom in the solution by moving away from a compiler pre-determined scheduling order for the components towards a more wireless aware scheduling order. For some component dependency graph structures, the proposed algorithm can shorten execution times by parallel processing appropriate components in the mobile and cloud. We define a net utility that trades-off the energy saved by the mobile, subject to constraints on the communication delay, overall application execution time, and component precedence ordering. The linear optimization problem is solved using real data measurements obtained from running multi-component applications on an HTC smartphone and the Amazon EC2, using WiFi for cloud offloading. The performance is further analyzed using various component dependency graph topologies and sizes. Results show that the energy saved increases with longer application runtime deadline, higher wireless rates, and smaller offload data sizes.

219 citations

Journal ArticleDOI
TL;DR: This paper investigates author gender identification for short length, multi-genre, content-free text, such as the ones found in many Internet applications, and proposes 545 psycho-linguistic and gender-preferential cues along with stylometric features to build the feature space for this identification problem.

219 citations

Journal ArticleDOI
TL;DR: It is established that the viscoelasticity of biofilms, as a corollary of structure and composition, performs a role in their protection against mechanical and chemical challenges.
Abstract: We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquids, like skin or blood, and stress relaxation of biofilms has been found to be a corollary of their structure and composition, including the EPS matrix and bacterial interactions. Review of the literature on viscoelastic properties of biofilms in ancient and modern environments as well as of infectious biofilms reveals that the viscoelastic properties of a biofilm relate with antimicrobial penetration in a biofilm. In addition, also the removal of biofilm from surfaces appears governed by the viscoelasticity of a biofilm. Herewith, it is established that the viscoelasticity of biofilms, as a corollary of structure and composition, performs a role in their protection against mechanical and chemical challenges. Pathways are discussed to make biofilms more susceptible to antimicrobials by intervening with their viscoelasticity, as a quantifiable expression of their structure and composition.

217 citations


Authors

Showing all 5536 results

NameH-indexPapersCitations
Paul M. Thompson1832271146736
Roger Jones138998114061
Georgios B. Giannakis137132173517
Li-Jun Wan11363952128
Joel L. Lebowitz10175439713
David Smith10099442271
Derong Liu7760819399
Robert R. Clancy7729318882
Karl H. Schoenbach7549419923
Robert M. Gray7537139221
Jin Yu7448032123
Sheng Chen7168827847
Hui Wu7134719666
Amir H. Gandomi6737522192
Haibo He6648222370
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

University of Maryland, College Park
155.9K papers, 7.2M citations

91% related

Purdue University
163.5K papers, 5.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202342
2022139
2021765
2020820
2019799
2018563