scispace - formally typeset
Search or ask a question
Institution

STMicroelectronics

CompanyGeneva, Switzerland
About: STMicroelectronics is a company organization based out in Geneva, Switzerland. It is known for research contribution in the topics: Signal & Transistor. The organization has 17172 authors who have published 29543 publications receiving 300766 citations. The organization is also known as: SGS-Thomson & STM.


Papers
More filters
Journal ArticleDOI
L. Dulau1, S. Pontarollo1, A. Boimond1, J.-F. Garnier1, N. Giraudo1, O. Terrasse1 
TL;DR: In this paper, the authors discuss new solutions in the design of insulated gate bipolar transistor (IGBT) gate drivers with advanced protections such as two-level turn-on to reduce peak current when turning on the device, twolevel turnoff to limit overvoltage when the device is turned off, and an active Miller clamp function that acts against cross conduction phenomena.
Abstract: The aim of this paper is to discuss new solutions in the design of insulated gate bipolar transistor (IGBT) gate drivers with advanced protections such as two-level turn-on to reduce peak current when turning on the device, two-level turn-off to limit over-voltage when the device is turned off, and an active Miller clamp function that acts against cross conduction phenomena. Afterwards, we describe a new circuit which includes a two-level turn-off driver and an active Miller clamp function. Tests and results for these advanced functions are discussed, with particular emphasis on the influence of an intermediate level in a two-level turn-off driver on overshoot across the IGBT.

113 citations

Patent
05 May 2011
TL;DR: In this paper, a bottom electrode is provided, and an active material comprising a first structural portion having an absorption peak at a UV wavelength and a second electrically active or activatable structural portion which is substantially transparent to such a predetermined UV wavelength is exposed to UV radiation having such UV wavelength, with photo-activation of the exposed portion of such film; selectively removing either the exposed photo-activated portion or the nonexposed portion, with exposure of a respective portion of the bottom electrode; depositing a head electrode.
Abstract: A method comprises providing a bottom electrode, depositing, on the bottom electrode, an active material comprising a first structural portion having an absorption peak at a UV wavelength, wherein such first structural portion is photo-activatable at such wavelength and which is constituted by monomers or oligomers that, when irradiated at said wavelength, undergo a photo-polymerization and/or photo-cross-linking reaction, or constituted by a polymer that at a UV wavelength undergoes a photo-degradation reaction, and a second electrically active or activatable structural portion which is substantially transparent to such predetermined UV wavelength; exposing a portion of the active material, through a photomask, to UV radiation having such UV wavelength, with photo-activation of the exposed portion of such film; selectively removing either the exposed photo-activated portion or the non-exposed portion, with exposure of a respective portion of the bottom electrode; depositing a head electrode.

113 citations

Journal ArticleDOI
TL;DR: In this paper, a Doppler transceiver and two receivers fabricated in a 65-nm GPLP CMOS technology are described, along with a single pole, double throw antenna switch with better than 5dB insertion loss and 25-dB isolation in the entire 110-170-GHz band.
Abstract: This paper reviews recent research conducted at the University of Toronto on the development of CMOS transceivers aimed at operation in the 90-170-GHz range. Unique nanoscale CMOS issues related to millimeter-wave circuit design in the 65-nm node and beyond are addressed with an emphasis on transistor and top-level layout issues, low-voltage circuit topologies, and design flow. A Doppler transceiver and two receivers fabricated in a 65-nm GPLP CMOS technology are described, along with a single pole, double throw antenna switch with better than 5-dB insertion loss and 25-dB isolation in the entire 110-170-GHz band. The first receiver has an IQ architecture with a fundamental frequency voltage-controlled oscillator, and is intended for wideband passive imaging applications at 100 GHz. The measured noise figure and downconversion gain are 7-8 and 10.5 dB, respectively, while the 3-dB bandwidth extends from 85 to 100 GHz. The second receiver has double-sideband architecture, operates in the 135-145-GHz range (the highest for CMOS receivers), and features an 8-dB gain LNA, a double-balanced Gilbert cell mixer, and a dipole antenna. The 90-94-GHz Doppler transceiver, the highest frequency reported to date in CMOS, is intended for the remote monitoring of respiratory functions. A Doppler shift of 30 Hz, produced by a slow-moving (4.8 cm/s) target located at a distance of 1 m, was measured with a transmitter output power of approximately + 2 dBm and a phase noise of -90 dBc/Hz at 1 MHz offset. The range correlation effect is demonstrated for the first time in CMOS by measuring the phase noise of the received baseband signal at 10-Hz offset, clearly indicating that 1/f noise has been canceled and it does not pose a problem in short-range applications, where neither a phase-locked loop nor a frequency divider are needed.

113 citations

Proceedings ArticleDOI
21 Aug 2010
TL;DR: To the knowledge, this is the first practical result of two fault laser attacks on a protected cryptographic application and considering that laser attacks are much more accurate in targeting a particular variable, the significance of the result cannot be overlooked.
Abstract: Since the first publication of a successful practical two-fault attack on protected CRT-RSA surprisingly little attention was given by the research community to an ensuing new challenge. The reason for it seems to be two-fold. One is that generic higher order fault attacks are very difficult to model and thus finding robust countermeasures is also difficult. Another reason may be that the published experiment was carried out on an outdated 8 bit microcontroller and thus was not perceived as a serious threat to create a sense of urgency in addressing this new menace. In this paper we describe two-fault attacks on protected CRT-RSA implementations running on an advanced 32 bit ARM Cortex M3 core. To our knowledge, this is the first practical result of two fault laser attacks on a protected cryptographic application. Considering that laser attacks are much more accurate in targeting a particular variable, the significance of our result cannot be overlooked.

113 citations

Journal ArticleDOI
01 Aug 2004
TL;DR: Dynamical systems made up of locally coupled nonlinear units are used to control the locomotion of bio-inspired robots and, in particular, a simulation of an insect-like hexapod robot.
Abstract: In this paper, dynamical systems made up of locally coupled nonlinear units are used to control the locomotion of bio-inspired robots and, in particular, a simulation of an insect-like hexapod robot. These controllers are inspired by the biological paradigm of central pattern generators and are responsible for generating a locomotion gait. A general structure, which is able to change the locomotion gait according to environmental conditions, is introduced. This structure is based on an adaptive system, implemented by motor maps, and is able to learn the correct locomotion gait on the basis of a reward function. The proposed control system is validated by a large number of simulations carried out in a dynamic environment for simulating legged robots.

112 citations


Authors

Showing all 17185 results

NameH-indexPapersCitations
Bharat Bhushan116127662506
Albert Polman9744542985
G. Pessina8482830807
Andrea Santangelo8388629019
Paolo Mattavelli7448219926
Daniele Ielmini6836716443
Jean-François Carpentier6245914271
Robert Henderson5844013189
Bruce B. Doris5660412366
Renato Longhi551778644
Aldo Romani5442511513
Paul Muralt5434412694
Enrico Zanoni5370513926
Gaudenzio Meneghesso5170312567
Franco Zappa502749211
Network Information
Related Institutions (5)
Intel
68.8K papers, 1.6M citations

92% related

Motorola
38.2K papers, 968.7K citations

91% related

Samsung
163.6K papers, 2M citations

90% related

NEC
57.6K papers, 835.9K citations

89% related

Toshiba
83.6K papers, 1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202225
2021560
2020798
2019952
2018948
2017781