scispace - formally typeset
Search or ask a question

Showing papers by "Stockholm University published in 2015"


Journal ArticleDOI
TL;DR: GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules, and provides a rich set of calculation types.

12,985 citations


Journal ArticleDOI
23 Jan 2015-Science
TL;DR: In this paper, a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level.
Abstract: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

9,745 citations


Journal ArticleDOI
13 Feb 2015-Science
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

7,169 citations


Journal ArticleDOI
28 Aug 2015-Science
TL;DR: A large-scale assessment suggests that experimental reproducibility in psychology leaves a lot to be desired, and correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.
Abstract: Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.

5,532 citations


Journal ArticleDOI
09 Apr 2015-Nature
TL;DR: In this paper, the authors find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.
Abstract: Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

2,282 citations


Journal ArticleDOI
16 Jan 2015
TL;DR: The "Great Acceleration" graphs as mentioned in this paper, originally published in 2004 to show socio-economic and Earth System trends from 1750 to 2000, have now been updated to 2010 and the dominant feature of the socioeconomic trends is that the economic activity of the human enterprise continues to grow at a rapid rate.
Abstract: The ‘Great Acceleration’ graphs, originally published in 2004 to show socio-economic and Earth System trends from 1750 to 2000, have now been updated to 2010. In the graphs of socio-economic trends, where the data permit, the activity of the wealthy (OECD) countries, those countries with emerging economies, and the rest of the world have now been differentiated. The dominant feature of the socio-economic trends is that the economic activity of the human enterprise continues to grow at a rapid rate. However, the differentiated graphs clearly show that strong equity issues are masked by considering global aggregates only. Most of the population growth since 1950 has been in the non-OECD world but the world’s economy (GDP), and hence consumption, is still strongly dominated by the OECD world. The Earth System indicators, in general, continued their long-term, post-industrial rise, although a few, such as atmospheric methane concentration and stratospheric ozone loss, showed a slowing or apparent stabilisation over the past decade. The post-1950 acceleration in the Earth System indicators remains clear. Only beyond the mid-20th century is there clear evidence for fundamental shifts in the state and functioning of the Earth System that are beyond the range of variability of the Holocene and driven by human activities. Thus, of all the candidates for a start date for the Anthropocene, the beginning of the Great Acceleration is by far the most convincing from an Earth System science perspective.

1,975 citations


Journal ArticleDOI
TL;DR: A circRNA brain expression atlas and evidence for important circRNA functions and values as biomarkers are provided and discovered and analyzed thousands of neuronal human and mouse circRNAs.

1,759 citations


Journal ArticleDOI
Sandra Díaz1, Sebsebe Demissew2, Julia Carabias3, Carlos Alfredo Joly4, Mark Lonsdale, Neville Ash5, Anne Larigauderie, Jay Ram Adhikari, Salvatore Arico6, András Báldi, Ann M. Bartuska7, Ivar Andreas Baste, Adem Bilgin, Eduardo S. Brondizio8, Kai M. A. Chan9, Viviana E. Figueroa, Anantha Kumar Duraiappah, Markus Fischer, Rosemary Hill10, Thomas Koetz, Paul Leadley11, Philip O'b. Lyver12, Georgina M. Mace13, Berta Martín-López14, Michiko Okumura5, Diego Pacheco, Unai Pascual15, Edgar Selvin Pérez, Belinda Reyers16, Eva Roth17, Osamu Saito18, Robert J. Scholes19, Nalini Sharma5, Heather Tallis20, Randolph R. Thaman21, Robert T. Watson22, Tetsukazu Yahara23, Zakri Abdul Hamid, Callistus Akosim, Yousef S. Al-Hafedh24, Rashad Allahverdiyev, Edward Amankwah, T. Stanley Asah25, Zemede Asfaw2, Gabor Bartus26, Anathea L. Brooks6, Jorge Caillaux27, Gemedo Dalle, Dedy Darnaedi, Amanda Driver (Sanbi), Gunay Erpul28, Pablo Escobar-Eyzaguirre, Pierre Failler29, Ali Moustafa Mokhtar Fouda, Bojie Fu30, Haripriya Gundimeda31, Shizuka Hashimoto32, Floyd Homer, Sandra Lavorel33, Gabriela Lichtenstein34, William Armand Mala35, Wadzanayi Mandivenyi, Piotr Matczak36, Carmel Mbizvo, Mehrasa Mehrdadi, Jean Paul Metzger37, Jean Bruno Mikissa38, Henrik Moller39, Harold A. Mooney40, Peter J. Mumby41, Harini Nagendra42, Carsten Nesshöver43, Alfred Oteng-Yeboah44, György Pataki45, Marie Roué, Jennifer Rubis6, Maria Schultz46, Peggy Smith47, Rashid Sumaila9, Kazuhiko Takeuchi18, Spencer Thomas, Madhu Verma48, Youn Yeo-Chang49, Diana Zlatanova50 
National University of Cordoba1, Addis Ababa University2, National Autonomous University of Mexico3, State University of Campinas4, United Nations Environment Programme5, UNESCO6, United States Department of Agriculture7, Indiana University8, University of British Columbia9, Commonwealth Scientific and Industrial Research Organisation10, University of Paris-Sud11, Landcare Research12, University College London13, Autonomous University of Madrid14, University of Cambridge15, Council for Scientific and Industrial Research16, University of Southern Denmark17, United Nations University18, Virginia Tech College of Natural Resources and Environment19, The Nature Conservancy20, University of the South Pacific21, University of East Anglia22, Kyushu University23, King Abdulaziz City for Science and Technology24, University of Washington25, Budapest University of Technology and Economics26, Environmental Law Institute27, Ankara University28, University of Portsmouth29, Chinese Academy of Sciences30, Indian Institute of Technology Bombay31, Kyoto University32, Joseph Fourier University33, National Scientific and Technical Research Council34, University of Yaoundé35, Polish Academy of Sciences36, University of São Paulo37, École Normale Supérieure38, University of Otago39, Stanford University40, University of Queensland41, Azim Premji University42, Helmholtz Centre for Environmental Research - UFZ43, University of Ghana44, Corvinus University of Budapest45, Stockholm University46, Lakehead University47, Indian Institute of Forest Management48, Seoul National University49, Sofia University50
TL;DR: The first public product of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) is its Conceptual Framework as discussed by the authors, which will underpin all IPBES functions and provide structure and comparability to the syntheses that will produce at different spatial scales, on different themes, and in different regions.

1,585 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations


Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: In this paper, the authors generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms.
Abstract: We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.

1,332 citations


Journal ArticleDOI
Markus Ackermann, Andrea Albert1, Brandon Anderson2, W. B. Atwood3, Luca Baldini1, Guido Barbiellini4, Denis Bastieri4, Keith Bechtol5, Ronaldo Bellazzini4, Elisabetta Bissaldi4, Roger Blandford1, E. D. Bloom1, R. Bonino4, Eugenio Bottacini1, T. J. Brandt6, Johan Bregeon7, P. Bruel8, R. Buehler, G. A. Caliandro1, R. A. Cameron1, R. Caputo3, M. Caragiulo4, P. A. Caraveo9, C. Cecchi4, Eric Charles1, A. Chekhtman10, James Chiang1, G. Chiaro11, Stefano Ciprini4, R. Claus1, Johann Cohen-Tanugi7, Jan Conrad2, Alessandro Cuoco4, S. Cutini4, Filippo D'Ammando9, A. De Angelis4, F. de Palma4, R. Desiante4, Seth Digel1, L. Di Venere12, Persis S. Drell1, Alex Drlica-Wagner13, R. Essig14, C. Favuzzi4, S. J. Fegan8, Elizabeth C. Ferrara6, W. B. Focke1, A. Franckowiak1, Yasushi Fukazawa15, Stefan Funk, P. Fusco4, F. Gargano4, Dario Gasparrini4, Nicola Giglietto4, Francesco Giordano4, Marcello Giroletti9, T. Glanzman1, G. Godfrey1, G. A. Gomez-Vargas4, I. A. Grenier16, Sylvain Guiriec6, M. Gustafsson17, E. Hays6, John W. Hewitt18, D. Horan8, T. Jogler1, Gudlaugur Johannesson19, M. Kuss4, Stefan Larsson2, Luca Latronico4, Jingcheng Li20, L. Li2, M. Llena Garde2, Francesco Longo4, F. Loparco4, P. Lubrano4, D. Malyshev1, M. Mayer, M. N. Mazziotta4, Julie McEnery6, Manuel Meyer2, Peter F. Michelson1, Tsunefumi Mizuno15, A. A. Moiseev21, M. E. Monzani1, A. Morselli4, S. Murgia22, E. Nuss7, T. Ohsugi15, M. Orienti9, E. Orlando1, J. F. Ormes23, David Paneque1, J. S. Perkins6, Melissa Pesce-Rollins1, F. Piron7, G. Pivato4, T. A. Porter1, S. Rainò4, R. Rando4, M. Razzano4, A. Reimer1, Olaf Reimer1, Steven Ritz3, Miguel A. Sánchez-Conde2, André Schulz, Neelima Sehgal24, Carmelo Sgrò4, E. J. Siskind, F. Spada4, Gloria Spandre4, P. Spinelli4, Louis E. Strigari25, Hiroyasu Tajima1, Hiromitsu Takahashi15, J. B. Thayer1, L. Tibaldo1, Diego F. Torres20, Eleonora Troja6, Giacomo Vianello1, Michael David Werner, Brian L Winer26, K. S. Wood27, Matthew Wood1, Gabrijela Zaharijas4, Stephan Zimmer2 
TL;DR: In this article, the authors report on γ-ray observations of the Milky-Way satellite galaxies (dSphs) based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis.
Abstract: The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100 GeV annihilating via quark and τ-lepton channels.

Journal ArticleDOI
TL;DR: This paper reviews available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe and extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface.
Abstract: Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids.

Journal ArticleDOI
TL;DR: This work shows that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials.
Abstract: High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expan ...

Journal ArticleDOI
TL;DR: Support is provided to the hypothesis that work-related stress defined as job strain is linked to an increased risk of AF by pointing towards a dose-response relationship when taking accumulated exposure to job strain over time into account.
Abstract: Introduction. Atrial fibrillation (AF) is a common heart rhythm disorder. Several life-style factors have been identified as risk factors for AF, but less is known about the impact of work-related stress. This study aims to evaluate the association between work-related stress, defined as job strain, and risk of AF. Methods. Data from the Swedish WOLF study was used, comprising 10,121 working men and women. Job strain was measured by the demand-control model. Information on incident AF was derived from national registers. Cox proportional hazard regression was used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between job strain and AF risk. Results. In total, 253 incident AF cases were identified during a total follow-up time of 132,387 person-years. Job strain was associated with AF risk in a time-dependent manner, with stronger association after 10.7 years of follow-up (HR 1.93, 95% CI 1.10–3.36 after 10.7 years, versus HR 1.11, 95% CI 0.67–1.83 before 10.7 years). The results pointed towards a dose-response relationship when taking accumulated exposure to job strain over time into account. Conclusion. This study provides support to the hypothesis that work-related stress defined as job strain is linked to an increased risk of AF.

Book ChapterDOI
01 Jan 2015
TL;DR: GROMACS as mentioned in this paper is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world.
Abstract: GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.

Journal ArticleDOI
Derrek P. Hibar1, Jason L. Stein2, Jason L. Stein1, Miguel E. Rentería3  +341 moreInstitutions (93)
09 Apr 2015-Nature
TL;DR: In this paper, the authors conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts.
Abstract: The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

Journal ArticleDOI
TL;DR: Why ecosystem service information has yet to fundamentally change decision-making is explored and a path forward is suggested that emphasizes developing solid evidence linking decisions to impacts on natural capital and ecosystem services, and then to human well-being.
Abstract: The central challenge of the 21st century is to develop economic, social, and governance systems capable of ending poverty and achieving sustainable levels of population and consumption while securing the life-support systems underpinning current and future human well-being. Essential to meeting this challenge is the incorporation of natural capital and the ecosystem services it provides into decision-making. We explore progress and crucial gaps at this frontier, reflecting upon the 10 y since the Millennium Ecosystem Assessment. We focus on three key dimensions of progress and ongoing challenges: raising awareness of the interdependence of ecosystems and human well-being, advancing the fundamental interdisciplinary science of ecosystem services, and implementing this science in decisions to restore natural capital and use it sustainably. Awareness of human dependence on nature is at an all-time high, the science of ecosystem services is rapidly advancing, and talk of natural capital is now common from governments to corporate boardrooms. However, successful implementation is still in early stages. We explore why ecosystem service information has yet to fundamentally change decision-making and suggest a path forward that emphasizes: (i) developing solid evidence linking decisions to impacts on natural capital and ecosystem services, and then to human well-being; (ii) working closely with leaders in government, business, and civil society to develop the knowledge, tools, and practices necessary to integrate natural capital and ecosystem services into everyday decision-making; and (iii) reforming institutions to change policy and practices to better align private short-term goals with societal long-term goals.

Journal ArticleDOI
Markus Ackermann, Marco Ajello1, Andrea Albert2, W. B. Atwood3  +174 moreInstitutions (43)
TL;DR: The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV.
Abstract: The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

Journal ArticleDOI
Markus Ackermann, Marco Ajello1, W. B. Atwood2, Luca Baldini3  +180 moreInstitutions (41)
TL;DR: The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented in this paper, which is based on the 3FGL of sources detected between 100 MeV and 300 GeV.
Abstract: The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected between 100 MeV and 300 GeV w ...

Journal ArticleDOI
TL;DR: There is substantial empirical evidence that employees, both men and women, who report lack of decision latitude, job strain and bullying, will experience increasing depressive symptoms over time and these conditions are amenable to organizational interventions.
Abstract: Background: Depressive symptoms are potential outcomes of poorly functioning work environments. Such symptoms are frequent and cause considerable suffering for the employees as well as financial loss for the employers. Accordingly good prospective studies of psychosocial working conditions and depressive symptoms are valuable. Scientific reviews of such studies have pointed at methodological difficulties but still established a few job risk factors. Those reviews were published some years ago. There is need for an updated systematic review using the GRADE system. In addition, gender related questions have been insufficiently reviewed. Method: Inclusion criteria for the studies published 1990 to June 2013: 1. European and English speaking countries. 2. Quantified results describing the relationship between exposure (psychosocial or physical/chemical) and outcome (standardized questionnaire assessment of depressive symptoms or interview-based clinical depression). 3. Prospective or comparable case-control design with at least 100 participants. 4. Assessments of exposure (working conditions) and outcome at baseline and outcome (depressive symptoms) once again after follow-up 1-5 years later. 5. Adjustment for age and adjustment or stratification for gender. Studies filling inclusion criteria were subjected to assessment of 1.) relevance and 2.) quality using predefined criteria. Systematic review of the evidence was made using the GRADE system. When applicable, meta-analysis of the magnitude of associations was made. Consistency of findings was examined for a number of possible confounders and publication bias was discussed. Results: Fifty-nine articles of high or medium high scientific quality were included. Moderately strong evidence (grade three out of four) was found for job strain (high psychological demands and low decision latitude), low decision latitude and bullying having significant impact on development of depressive symptoms. Limited evidence (grade two) was shown for psychological demands, effort reward imbalance, low support, unfavorable social climate, lack of work justice, conflicts, limited skill discretion, job insecurity and long working hours. There was no differential gender effect of adverse job conditions on depressive symptoms

Journal ArticleDOI
TL;DR: The literature on atmospheric particulate maffer (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature.
Abstract: The literature on atmospheric particulate maffer (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500—2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate maffer constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and thepoticy needs, which have driven much ofthe increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate—aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we stijl do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global wanning and delay the time when anthropogenic effects on global temperature would exceed 2°C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SlA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China and the USA. Thus, there is much that could be done to reduce the effects of atmospheric PM on the climate and the health of the environment and the human population. A prioritized list of actions to mitigate the full range of effects ofPM is currently undeliverable due to shortcomings in the knowledge of aerosol science; among the shortcomings, the roles of PM in global climate and the relative roles of different PM precursor sources and their response to climate and land use change over the remaining decades of this century are prominent. In any case, the evidence from this paper strongly advocates for an integrated approach to air quality and climate policies.

Journal ArticleDOI
TL;DR: The General Bathymetric Chart of the Oceans (GEBCO) as discussed by the authors has been updated with a new digital bathymetric model of the world ocean floor merged with land topography from publicly available digital elevation models.
Abstract: General Bathymetric Chart of the Oceans (GEBCO) has released the GEBCO_2014 grid, a new digital bathymetric model of the world ocean floor merged with land topography from publicly available digital elevation models. GEBCO_2014 has a grid spacing of 30 arc seconds, and updates the 2010 release (GEBCO_08) by incorporating new versions of regional bathymetric compilations from the International Bathymetric Chart of the Arctic Ocean (IBCAO), the International Bathymetric Chart of the Southern Ocean (IBCSO), the Baltic Sea Bathymetry Database (BSBD), and data from the European Marine Observation and Data network (EMODnet) bathymetry portal, among other data sources. Approximately 33% of ocean grid cells (not area) have been updated in GEBCO_2014 from the previous version, including both new interpolated depth values and added soundings. These updates include large amounts of multibeam data collected using modern equipment and navigation techniques, improving portrayed details of the world ocean floor. Of all non-land grid cells in GEBCO_2014, approximately 18% are based on bathymetric control data, i.e., primarily multibeam and single beam soundings, or pre-prepared grids which may contain some interpolated values. The GEBCO_2014 grid has a mean and median depth of 3897 m and 3441 m, respectively. Hypsometric analysis reveals that 50% of the Earth's surface is comprised of seafloor located 3200 m below mean sea level, and that ~900 ship-years of surveying would be needed to obtain complete multibeam coverage of the world's oceans.

Journal ArticleDOI
TL;DR: It is found that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle, and forests are expected to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks.
Abstract: Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks.

Journal ArticleDOI
TL;DR: The authors argue that the trends normally linked with the second demographic transition (SDT) may be reversed as the gender revolution enters its second half by including men more centrally in the family.
Abstract: This article argues that the trends normally linked with the second demographic transition (SDT) may be reversed as the gender revolution enters its second half by including men more centrally in the family. We develop a theoretical argument about the emerging consequences of this stage of the gender revolution and review research results that bear on it. The argument compares the determinants and consequences of recent family trends in industrialized societies provided by two narratives: the SDT and the gender revolution in the public and private spheres. Our argument examines differences in theoretical foundations and positive vs. negative implications for the future. We focus primarily on the growing evidence for turnarounds in the relationships between measures of women's human capital and union formation, fertility, and union dissolution, and consider evidence that men's home involvement increases union formation and fertility and decreases union instability. Although the family trends underlying the SDT and the gender revolution narratives are ongoing and a convincing view of the phenomenon has not yet emerged, the wide range of recent research results documenting changing, even reversing relationships suggests that the gender approach is increasingly the more fruitful one.

Journal ArticleDOI
TL;DR: This article provided an overview and analysis of the main observational datasets compiled by the World Glacier Monitoring Service (WGMS) and showed that the rates of early 21st-century mass loss are without precedent on a global scale, at least for the time period observed and probably also for recorded history.
Abstract: Observations show that glaciers around the world are in retreat and losing mass. Internationally coordinated for over a century, glacier monitoring activities provide an unprecedented dataset of glacier observations from ground, air and space. Glacier studies generally select specific parts of these datasets to obtain optimal assessments of the mass-balance data relating to the impact that glaciers exercise on global sea-level fluctuations or on regional runoff. In this study we provide an overview and analysis of the main observational datasets compiled by the World Glacier Monitoring Service (WGMS). The dataset on glacier front variations (�42000 since 1600) delivers clear evidence that centennial glacier retreat is a global phenomenon. Intermittent readvance periods at regional and decadal scale are normally restricted to a subsample of glaciers and have not come close to achieving the maximum positions of the Little Ice Age (or Holocene). Glaciological and geodetic observations (�5200since 1850) show that the rates of early 21st-century mass loss are without precedent on a global scale, at least for the time period observed and probably also for recorded history, as indicated also in reconstructions from written and illustrated documents. This strong imbalance implies that glaciers in many regions will very likely suffer further ice loss, even if climate remains stable.

Journal ArticleDOI
TL;DR: In this paper, a fine columnar sub-grain structure of size 0.5μm was observed inside each individual large grain of single-crystal nature and with grain sizes in the range of 10-100μm.
Abstract: Laser melting (LM), with a focused Nd: YAG laser beam, was used to form solid bodies from a 316L austenite stainless steel powder. The microstructure, phase content and texture of the LM stainless steel were characterized and compared with conventional 316L stainless steel. The crack-free LM samples achieved a relative density of 98.6±0.1%. The XRD pattern revealed a single phase Austenite with preferential crystallite growth along the (100) plane and an orientation degree of 0.84 on the building surface. A fine columnar sub-grain structure of size 0.5 μm was observed inside each individual large grain of single-crystal nature and with grain sizes in the range of 10–100 μm. Molybdenum was found to be enriched at the sub-grain boundaries accompanied with high dislocation concentrations. It was proposed that such a sub-grain structure is formed by the compositional fluctuation due to the slow kinetics of homogeneous alloying of large Mo atoms during rapid solidification. The local enrichment of misplaced Mo in the Austenite lattice induced a network of dislocation tangling, which would retard or even block the migration of newly formed dislocations under indentation force, turning otherwise a soft Austenite to hardened steel. In addition, local formation of spherical nano-inclusions of an amorphous chromium-containing silicate was observed. The origin and the implications of the formation of such oxide nano-inclusions were discussed.

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of an analysis of benefits of ecosystem services in urban areas and show that investing in ecological infrastructure in cities, and the ecological restoration and rehabilitation of ecosystems such as rivers, lakes, and woodlands occurring in urban area, may not only be ecologically and socially desirable, but also quite often, economically advantageous, even based on the most traditional economic approaches.

Journal ArticleDOI
TL;DR: With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.
Abstract: Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

Journal ArticleDOI
TL;DR: Employees who work long hours have a higher risk of stroke than those working standard hours; the association with coronary heart disease is weaker; these findings suggest that more attention should be paid to the management of vascular risk factors in individuals whoWork long hours.

Journal ArticleDOI
M. G. Aartsen1, K. Abraham2, Markus Ackermann, Jenni Adams3  +316 moreInstitutions (45)
TL;DR: In this article, the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis are combined, and the combined event sample features high-statistics samples of shower-like and track-like events.
Abstract: Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies greater than or similar to 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, nu(mu)-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index -2.50 +/- 0.09 and a flux at 100 TeV of (6.7(-1.2)(+1.1)) x 10(-18) GeV-1 s(-1) sr(-1) cm(-2). Under the same assumptions, an unbroken power law with index -2 is disfavored with a significance of 3.8 sigma (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1 sigma (p = 1.7%) if instead we compare the best fit to a spectrum with index -2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a nu(e) fraction of 0.18 +/- 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6 sigma ( p = 0.014%).